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Preface

This course is a brief introduction to Quantum Field Theory in Curved Spacetime
(QFTCS)—a beautiful and fascinating area of fundamental physics. The applica-
tion of QFTCS is required in situations when both gravitation and quantum me-
chanics play a significant role, for instance, in early-universe cosmology and black
hole physics. The goal of this course is to introduce some of the most accessible
aspects of quantum theory in nontrivial backgrounds and to explain its most unex-
pected and spectacular manifestations—the Casimir effect (uncharged metal plates
attract), the Unruh effect (an accelerated observer will detect particles in vacuum),
and Hawking’s theoretical discovery of black hole radiation (black holes are not
completely black).

This short course was taught in the framework of Heidelberger Graduiertenkurse
at the Heidelberg University (Germany) in the Spring of 2006. The audience in-
cluded advanced undergraduates and beginning graduate students. Only a basic
familiarity with quantum mechanics, electrodynamics, and general relativity is re-
quired. The emphasis is on concepts and intuitive explanations rather than on
computational techniques. The relevant calculations are deliberately simplified
as much as possible, while retaining all the relevant physics. Some remarks and
derivations are typeset in smaller print and can be skipped at first reading.
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These lecture notes are freely based on an early draft of the book [MW07] with
some changes appropriate for the purposes of the Heidelberg course. The present
text may be freely distributed according to the GNU Free Documentation License.1

Sergei Winitzki, April 2006

Suggested literature

The following more advanced books may be studied as a continuation of this in-
troductory course:

[BD82] N. D. BIRRELL and P. C. W. DAVIES, Quantum fields in curved space
(Cambridge University Press, 1982).

[F89] S. A. FULLING, Aspects of quantum field theory in curved space-time (Cam-
bridge University Press, 1989).

[GMM94] A. A. GRIB, S. G. MAMAEV, and V. M. MOSTEPANENKO, Vacuum
quantum effects in strong fields (Friedmann Laboratory Publishing, St. Petersburg,
1994).

The following book contains a significantly more detailed presentation of the
material of this course, and much more:

[MW07] V. F. MUKHANOV and S. WINITZKI, Quantum Effects in Gravity (to be
published by Cambridge University Press, 2007).2

1 Quantization of harmonic oscillator

This section serves as a very quick reminder of quantum mechanics of harmonic
oscillators. It is assumed that the reader is already familiar with such notions as
Schrödinger equation and Heisenberg picture.

1.1 Canonical quantization

A classical harmonic oscillator is described by a coordinate q(t) satisfying

q̈ + ω2q = 0, (1)

where ω is a real constant. The general solution of this equation can be written as

q(t) = aeiωt + a∗e−iωt,

where a is a (complex-valued) constant. We may identify the “ground state” of the
oscillator as the state without motion, i.e. q(t) ≡ 0. This is obviously the lowest-
energy state of the oscillator.

The quantum theory of the oscillator is obtained by the standard procedure
known as canonical quantization. Canonical quantization does not apply directly
to an equation of motion. Rather, we first need to describe the system using the
Hamiltonian formalism, which means that we must start with the Lagrangian ac-
tion principle. The classical equation of motion (1) is reformulated as a condition
to extremize the action,

∫

L(q, q̇)dt =

∫
[

1

2
q̇2 − 1

2
ω2q2

]

dt,

1See www.gnu.org/copyleft/fdl.html
2An early, incomplete draft is available at www.theorie.physik.uni-muenchen.de/~serge/T6/
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where the function L(q, q̇) is the Lagrangian. (For simplicity, we assumed a unit
mass of the oscillator.) Then we define the canonical momentum

p ≡ ∂L(q, q̇)

∂q̇
= q̇,

and perform a Legendre transformation to find the Hamiltonian

H(p, q) ≡ [pq̇ − L]q̇→p =
1

2
p2 +

1

2
ω2q2.

The Hamiltonian equations of motion are

q̇ = p, ṗ = −ω2q.

Finally, we replace the classical coordinate q(t) and the momentum p(t) by Hermi-
tian operators q̂(t) and p̂(t) satisfying the same equations of motion,

˙̂q = p̂, ˙̂p = −ω2q̂,

and additionally postulate the Heisenberg commutation relation

[q̂(t), p̂(t)] = i~. (2)

The Hamiltonian H(p, q) is also promoted to an operator,

Ĥ ≡ H(p̂, q̂) =
1

2
p̂2 +

1

2
ω2q̂2.

All the quantum operators pertaining to the oscillator act in a certain vector space
of quantum states or wavefunctions. (This space must be a Hilbert space; see Ap-
pendix A for details.) Vectors from this space are usually denoted using Dirac’s
“bra-ket” symbols: vectors are denoted by |a〉, |b〉, and the corresponding covec-
tors by 〈a|, 〈b|, etc. Presently, we use the Heisenberg picture, in which the opera-
tors depend on time but the quantum states are time-independent. This picture is
more convenient for developing quantum field theory than the Schrödinger pic-
ture where operators are time-independent but wavefunctions change with time.
Therefore, we shall continue to treat the harmonic oscillator in the Heisenberg pic-
ture. We shall not need to use the coordinate or momentum representation of
wavefunctions.

1.2 Creation and annihilation operators

The “classical ground state” q̂(t) ≡ 0 is impossible in quantum theory because in
that case the commutation relation (2) could not be satisfied by any p̂(t). Hence, a
quantum oscillator cannot be completely at rest, and its lowest-energy state (called
the ground state or the vacuum state) has a more complicated structure. The stan-
dard way of describing quantum oscillators is through the introduction of the cre-
ation and annihilation operators.

From now on, we use the units where ~ = 1. The Heisenberg commutation
relation becomes

[q̂(t), p̂(t)] = i. (3)

We now define the annihilation operator â−(t) and its Hermitian conjugate, cre-
ation operator â+(t), by

â±(t) =

√

ω

2

[

q̂(t) ∓ i

ω
p̂(t)

]

.
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These operators are not Hermitian since (â−)† = â+. The equation of motion for
the operator â−(t) is straightforward to derive,

d

dt
â−(t) = −iωâ−(t). (4)

(The Hermitian conjugate operator â+(t) satisfies the complex conjugate equation.)
The solution of Eq. (4) with the initial condition â−(t)|t=0 = â−0 can be readily
found,

â−(t) = â−0 e
−iωt. (5)

It is helpful to introduce time-independent operators â±0 ≡ â± and to write the
time-dependent phase factor eiωt explicitly. For instance, we find that the canonical
variables p̂(t), q̂(t) are related to â± by

p̂(t) =
√
ω
â−e−iωt − â+eiωt

i
√

2
, q̂(t) =

â−e−iωt + â+eiωt

√
2ω

. (6)

From now on, we shall only use the time-independent operators â±. Using Eqs. (3)
and (6), it is easy to show that

[â−, â+] = 1.

Using the relations (6), the operator Ĥ can be expressed through the creation and
annihilation operators â± as

Ĥ =

(

â+â− +
1

2

)

ω. (7)

1.3 Particle number eigenstates

Quantum states of the oscillator are described by vectors in an appropriate (infinite-
dimensional) Hilbert space. A complete basis in this space is made of vectors |0〉,
|1〉, ..., which are called the occupation number states or particle number states.
The construction of these states is well known, and we briefly review it here for
completeness.

It is seen from Eq. (7) that the eigenvalues of Ĥ are bounded from below by
1
2ω. It is then assumed that the ground state |0〉 exists and is unique. Using this
assumption and the commutation relations, one can show that the state |0〉 satisfies

â− |0〉 = 0.

(This derivation is standard and we omit it here.) Then we have Ĥ |0〉 = 1
2ω |0〉,

which means that the ground state |0〉 indeed has the lowest possible energy 1
2ω.

The excited states |n〉, where n = 1, 2, ..., are defined by

|n〉 =
1√
n!

(â+)n |0〉 . (8)

The factors
√
n! are needed for normalization, namely 〈m|n〉 = δmn. It is easy to

see that every state |n〉 is an eigenstate of the Hamiltonian,

Ĥ |n〉 =

(

n+
1

2

)

ω |n〉 .

In other words, the energy of the oscillator is quantized (not continuous) and is mea-
sured in discrete “quanta” equal to ω. Therefore, we might interpret the state |n〉
as describing the presence of n “quanta” of energy or n “particles,” each “particle”
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having the energy ω. (In normal units, the energy of each quantum is ~ω, which

is the famous Planck formula for the energy quantum.) The operator N̂ ≡ â+â−

is called the particle number operator. Since N̂ |n〉 = n |n〉, the states |n〉 are also
called particle number eigenstates. This terminology is motivated by the applica-
tions in quantum field theory (as we shall see below).

To get a feeling of what the ground state |0〉 looks like, one can compute the ex-
pectation values of the coordinate and the momentum in the state |0〉. For instance,
using Eq. (6) we find

〈0| q̂(t) |0〉 = 0, 〈0| p̂(t) |0〉 = 0,

〈0| q̂2(t) |0〉 =
1

2ω
, 〈0| p̂2(t) |0〉 =

ω

2
.

It follows that the ground state |0〉 of the oscillator exhibits fluctuations of both the
coordinate and the momentum around a zero mean value. The typical value of the

fluctuation in the coordinate is δq ∼ (2ω)
−1/2

.

2 Quantization of scalar field

The quantum theory of fields is built on two essential foundations: the classical
theory of fields and the quantum mechanics of harmonic oscillators.

2.1 Classical field

A classical field is described by a function of spacetime, φ (x, t), characterizing the
local strength or intensity of the field. Here x is a three-dimensional coordinate in
space and t is the time (in some reference frame). The function φ (x, t) may have
real values, complex values, or values in some finite-dimensional vector space. For
example, the electromagnetic field is described by the 4-potential Aµ(x, t), which
is a function whose values are 4-vectors.

The simplest example of a field is a real scalar field φ (x, t); its values are real
numbers. A free, massive scalar field satisfies the Klein-Gordon equation3

∂2φ

∂t2
−

3
∑

j=1

∂2φ

∂x2
j

+m2φ ≡ φ̈− ∆φ+m2φ ≡ ∂µ∂
µφ+m2φ = 0. (9)

The parameter m is the mass of the field. The solution φ (x, t) ≡ 0 is the classical
vacuum state (“no field”).

To simplify the equations of motion, it is convenient to use the spatial Fourier
decomposition,

φ (x, t) =

∫

d3k

(2π)3/2
eik·xφk(t), (10)

where we integrate over all three-dimensional vectors k. After the Fourier decom-
position, the partial differential equation (9) is replaced by infinitely many ordi-
nary differential equations, with one equation for each k:

φ̈k +
(

k2 +m2
)

φk = φ̈k + ω2
kφk = 0, ωk ≡

√

|k|2 +m2.

In other words, each function φk(t) satisfies the harmonic oscillator equation with
the frequency ωk. The complex-valued functions φk(t) are called the modes of the

3To simplify the formulas, we shall (almost always) use the units in which ~ = c = 1.
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field φ (abbreviated from “Fourier modes”). Note that the modes φk(t) of a real
field φ(x, t) satisfy the relation (φk)∗ = φ−k.

The equation of motion (9) can be found by extremizing the action

S [φ] =
1

2

∫

d4x
[

ηµν (∂µφ) (∂νφ) −m2φ2
]

≡ 1

2

∫

d3x dt
[

φ̇2 − (∇φ)2 −m2φ2
]

, (11)

where ηµν = diag(1,−1,−1,−1) is the Minkowski metric (in this chapter we con-
sider only the flat spacetime) and the Greek indices label four-dimensional coor-
dinates: x0 ≡ t and (x1, x2, x3) ≡ x. Using Eq. (10), one can also express the
action (11) directly through the (complex-valued) modes φk,

S =
1

2

∫

dt d3k

[

φ̇kφ̇
∗
k − ω2

kφkφ
∗
k

]

. (12)

2.2 Quantization of scalar field

The action (12) is analogous to that of a collection of infinitely many harmonic
oscillators. Therefore, we may quantize each mode φk(t) as a separate (complex-
valued) harmonic oscillator.

Let us begin with the Hamiltonian description of the field φ(x, t). The ac-
tion (11) must be thought of as an integral of the Lagrangian over time (but not
over space), S[φ] =

∫

L[φ] dt, so the Lagrangian L[φ] is

L[φ] =

∫

Ld3x; L ≡ 1

2
ηµν (∂µφ) (∂νφ) − 1

2
m2φ2,

where L is the Lagrangian density. To define the canonical momenta and the
Hamiltonian, one must use the LagrangianL[φ] rather than the Lagrangian density
L. Hence, the momenta π (x, t) are computed as the functional derivatives

π (x, t) ≡ δL [φ]

δφ̇ (x, t)
= φ̇ (x, t) ,

and then the classical Hamiltonian is

H =

∫

π (x, t) φ̇ (x, t) d3x − L =
1

2

∫

d3x
[

π2 + (∇φ)2 +m2φ2
]

. (13)

To quantize the field, we introduce the operators φ̂ (x, t) and π̂ (x, t) with the
standard commutation relations

[φ̂ (x, t) , π̂ (y, t)] = iδ (x − y) ; [φ̂ (x, t) , φ̂ (y, t)] = [π̂ (x, t) , π̂ (y, t)] = 0. (14)

The modes φk(t) also become operators φ̂k(t). The commutation relation for the
modes can be derived from Eq. (14) by performing Fourier transforms in x and y.
After some algebra, we find

[

φ̂k(t), π̂k′(t)
]

= iδ (k + k′) . (15)

Note the plus sign in δ(k1 + k2): this is related to the fact that the variable which is

conjugate to φ̂k is not π̂k but π̂−k = π̂†
k

.
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Remark: complex oscillators. The modes φk(t) are complex variables; each φk may be

thought of as a pair of real-valued oscillators, φk = φ
(1)
k

+ iφ
(2)
k

. Accordingly, the oper-

ators φ̂k are not Hermitian and (φ̂k)† = φ̂−k. In principle, one could rewrite the theory

in terms of Hermitian variables such as φ
(1,2)
k

and π
(1,2)
k

with standard commutation
relations,

h

φ
(1)
k
, π

(1)
k′

i

= iδ(k − k
′),

h

φ
(2)
k
, π

(2)
k′

i

= iδ(k − k
′)

but it is technically more convenient to keep the complex-valued modes φk. The non-
standard form of the commutation relation (15) is a small price to pay.

For each mode φk, we proceed with the quantization as in Sec. 1.2. We first
introduce the time-dependent creation and annihilation operators:

â−
k

(t) ≡
√

ωk

2

(

φ̂k +
iπ̂k

ωk

)

; â+
k
(t) ≡

√

ωk

2

(

φ̂−k − iπ̂−k

ωk

)

.

Note that (â−
k

)† = â+
k

. The equations of motion for the operators â±
k

(t),

d

dt
â±
k

(t) = ±iωkâ
±
k

(t),

have the general solution â±
k

(t) = (0)â±
k
e±iωkt, where the time-independent opera-

tors (0)â±
k

satisfy the relations (note the signs of k and k′)

[

â−
k
, â+

k′

]

= δ (k − k′) ;
[

â−
k
, â−

k′

]

=
[

â+
k
, â+

k′

]

= 0. (16)

In Eq. (16) we omitted the superscript (0) for brevity; below we shall always use
the time-independent creation and annihilation operators and denote them by â±

k
.

The Hilbert space of field states is built in the standard fashion. We postulate
the existence of the vacuum state |0〉 such that â−

k
|0〉 = 0 for all k. The state with

particle numbers ns in each mode with momentum ks (where s = 1, 2, ... is an
index that enumerates the excited modes) is defined by

|n1, n2, ...〉 =

[

∏

s

(

â+
ks

)ns

√
ns!

]

|0〉 . (17)

We write |0〉 instead of |0, 0, ...〉 for brevity. The Hilbert space of quantum states
is spanned by the vectors |n1, n2, ...〉 with all possible choices of the numbers ns.
This space is called the Fock space.

The quantum Hamiltonian of the free scalar field can be written as

Ĥ =
1

2

∫

d3k
[

π̂kπ̂−k + ω2
kφ̂kφ̂−k

]

,

and expressed through the creation and annihilation operators as

Ĥ =

∫

d3k
ωk

2

[

â−
k
â+
k

+ â+
k
â−
k

]

=

∫

d3k
ωk

2

[

2â+
k
â−
k

+ δ(3)(0)
]

. (18)

Derivation of Eq. (18)
We use the relations

φ̂k =
1√
2ωk

“

â−
k
e−iωkt + â+

−k
eiωkt

”

, π̂k = i

r

ωk

2

“

â+
−k
eiωkt − â−

k
e−iωkt

”

.

(Here â±
k

are time-independent operators.) Then we find

1

2

“

π̂kπ̂−k + ω2
kφ̂kφ̂−k

”

=
ωk

2

`

â−
k
â+
k

+ â+
−k
â−−k

´

.
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When we integrate over all k, the terms with −k give the same result as the terms with

k. Therefore Ĥ = 1
2

R

d3
k
`

â+
k
â−
k

+ â−
k
â+
k

´

ωk.

Thus we have quantized the scalar field φ(x, t) in the Heisenberg picture. Quan-

tum observables such as φ̂(x, t) and Ĥ are now represented by linear operators in
the Fock space, and the quantum states of the field φ are interpreted in terms of
particles. Namely, the state vector (17) is interpreted as a state with ns particles
having momentum ks (where s = 1, 2, ...). This particle interpretation is consistent

with the relativistic expression for the energy of a particle, E =
√

p2 +m2, if we
identify the 3-momentum p with the wavenumber k and the energy E with ωk.

2.3 Mode expansions

We now give a brief introduction to mode expansions, which offer a shorter and
computationally convenient way to quantize fields. A more detailed treatment is
given in Sec 5.

The quantum mode φ̂k(t) can be expressed through the creation and annihila-
tion operators,

φ̂k(t) =
1√
2ωk

(

â−
k
e−iωkt + â+

−k
eiωkt

)

.

Substituting this into Eq. (10), we obtain the following expansion of the field oper-

ator φ̂ (x, t),

φ̂ (x, t) =

∫

d3k

(2π)3/2

1√
2ωk

[

â−
k
e−iωkt+ik·x + â+

−k
eiωkt+ik·x] ,

which we then rewrite by changing k → −k in the second term to make the inte-
grand manifestly Hermitian:

φ̂ (x, t) =

∫

d3k

(2π)3/2

1√
2ωk

[

â−
k
e−iωkt+ik·x + â+

k
eiωkt−ik·x] . (19)

This expression is called the mode expansion of the quantum field φ̂.
It is easy to see that the Klein-Gordon equation (9) is identically satisfied by

the ansatz (19) with arbitrary time-independent operators â±
k

. In fact, Eq. (19) is a
general solution of Eq. (9) with operator-valued “integration constants” â±

k
. On the

other hand, one can verify that the commutation relations (15) between φ̂k and π̂k

are equivalent to Eq. (16). Therefore, we may view the mode expansion (19) as a
convenient shortcut to quantizing the field φ (x, t). One simply needs to postulate
the commutation relations (16) and the mode expansion (19), and then the opera-

tors φ̂k and π̂k do not need to be introduced explicitly. The Fock space of quantum
states is constructed directly through the operators â±

k
and interpreted as above.

3 Casimir effect

3.1 Zero-point energy

The zero-point energy is the energy of the vacuum state. We saw in Sec. 2.2 that a
quantum field is equivalent to a collection of infinitely many harmonic oscillators.
If the field φ is in the vacuum state, each oscillator φk is in the ground state and
has the energy 1

2ωk. Hence, the total zero-point energy of the field is the sum of
1
2ωk over all wavenumbers k. This sum may be approximated by an integral in the

9



following way: If one quantizes the field in a box of large but finite volume V , one
will obtain the result that the zero-point energy density is equal to

E0

V
=

∫

d3k

(2π)
3

1

2
ωk.

(A detailed computation can be found in the book [MW07].) Since ωk grows with
k, it is clear that the integral diverges. Taken at face value, this would indicate
an infinite energy density of the vacuum state. Since any energy density leads
to gravitational effects, the presence of a nonzero energy density in the vacuum
state contradicts the experimental observation that empty space does not generate
any gravitational force. The standard way to avoid this problem is to subtract
this infinite quantity from the energy of the system (“renormalization” of zero-
point energy). In other words, the ground state energy 1

2ωk is subtracted from
the Hamiltonian of each oscillator φk. A justification for this subtraction is that
the ground state energy cannot be extracted from an oscillator, and that only the
change in the oscillator’s energy can be observed.

3.2 Casimir effect

The Casimir effect is an experimentally verified prediction of quantum field theory.
It is manifested by a force of attraction between two uncharged conducting plates in
a vacuum. This force cannot be explained except by considering the zero-point en-
ergy of the quantized electromagnetic field. The presence of the conducting plates
makes the electromagnetic field vanish on the surfaces of the plates. This boundary
condition changes the structure of vacuum fluctuations of the field, which would
normally be nonzero on the plates. This change causes a finite shift ∆E of the
zero-point energy, compared with the zero-point energy in empty space without
the plates. The energy shift ∆E = ∆E(L) depends on the distance L between the
plates, and it turns out that ∆E grows with L. As a result, it is energetically fa-
vorable for the plates to move closer together, which is manifested as the Casimir
force of attraction between the plates,

F (L) = − d

dL
[∆E(L)] .

This theoretically predicted force has been confirmed by several experiments.4

3.3 Zero-point energy between plates

A realistic description of the Casimir effect involves quantization of the electro-
magnetic field in the presence of conductors having certain dielectric properties;
thermal fluctuations must also be taken into account. We shall drastically sim-
plify the calculations by considering a massless scalar field φ(t, x) in the flat 1+1-
dimensional spacetime. To simulate the presence of the plates, we impose the fol-
lowing boundary conditions:

φ(t, x)|x=0 = φ(t, x)|x=L = 0. (20)

The equation of motion for the classical field is ∂2
t φ − ∂2

xφ = 0, and the general
solution for the chosen boundary conditions is of the form

φ(t, x) =
∞
∑

n=1

(

Ane
−iωnt +Bne

iωnt
)

sinωnx, ωn ≡ nπ

L
.

4For example, a recent measurement of the Casimir force to 1% precision is described in: U. MO-
HIDEEN and A. ROY, Phys. Rev. Lett. 81 (1998), p. 4549.
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We shall now use this solution as a motivation for finding the appropriate mode
expansion for the field φ.

To quantize the field φ(t, x) in flat space, one would normally use the mode
expansion

φ̂(t, x) =

∫

dk

(2π)1/2

1√
2ωk

[

â−k e
−iωkt+ikx + â+

k e
iωkt−ikx

]

.

However, in the present case the only allowed modes are those satisfying Eq. (20),

so the above mode expansion cannot be used. To expand the field φ̂(t, x) into the
allowed modes, we use the orthogonal system of functions

gn(x) =

√

2

L
sin

nπx

L

which vanish at x = 0 and x = L. These functions satisfy the orthogonality relation

∫ L

0

gm(x)gn(x)dx = δmn.

(The coefficient
√

2/L is necessary for the correct normalization.) An arbitrary
function F (x) that vanishes at x = 0 and x = L can be expanded through the
functions gn(x) as

F (x) =

∞
∑

n=1

Fngn(x),

where the coefficients Fn are found as

Fn =

∫ L

0

F (x)gn(x)dx.

Performing this decomposition for the field operator φ̂(t, x), we find

φ̂(t, x) =

∞
∑

n=1

φ̂n(t)gn(x),

where φ̂n(t) is the n-th mode of the field. The mode φ̂n(t) satisfies the oscillator
equation

¨̂
φn +

(πn

L

)2

φ̂n ≡ ¨̂
φn + ω2

nφ̂n = 0, (21)

whose general solution is

φ̂n(t) = Âe−iωnt + B̂eiωnt,

where Â, B̂ are operator-valued integration constants. After computing the correct
normalization of these constants (see below), we obtain the the mode expansion for

φ̂ as

φ̂(t, x) =

√

2

L

∞
∑

n=1

sinωnx√
2ωn

[

â−n e
−iωnt + â+

n e
iωnt

]

. (22)

We need to compute the energy of the field only between the plates, 0 < x < L.
After some calculations (see below), one can express the zero-point energy per unit
length as

ε0 ≡ 1

L
〈0| Ĥ |0〉 =

1

2L

∑

k

ωk =
π

2L2

∞
∑

n=1

n. (23)
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Derivation of Eqs. (22) and (23)
We use the following elementary identities which hold for integer m,n:

Z L

0

dx sin
mπx

L
sin

nπx

L
=

Z L

0

dx cos
mπx

L
cos

nπx

L
=
L

2
δmn. (24)

First, let us show that the normalization factor
p

2/L in the mode expansion (22)
yields the standard commutation relations

ˆ

â−m, â
+
n

˜

= δmn. We integrate the mode
expansion over x and use the identity (24) to get

Z L

0

dx φ̂(x, t) sin ωnx =
1

2

r

L

ωn

h

â−n e
−iωnt + â+

n e
iωnt

i

.

Then we differentiate this with respect to t and obtain

Z L

0

dx′ π̂(y, t) sinωnx
′ =

i

2

√
Lωn

h

−â−n e−iωnt + â+
n e

iωnt
i

.

Now we can evaluate the commutator
»Z L

0

dx φ̂(x, t) sinωnx,

Z L

0

dy
d

dt
φ̂(x′, t) sinωn′x′

–

= i
L

2

ˆ

â−n , â
+
n′

˜

=

Z L

0

dx

Z L

0

dx′ sin
nπx

L
sin

n′πx′

L
iδ(x− x′) = i

L

2
δnn′ .

In the second line we used
h

φ̂(x, t), π̂(x′, t)
i

= iδ(x − x′). Therefore the standard

commutation relations hold for â±n .
The Hamiltonian for the field (restricted to the region between the plates) is

Ĥ =
1

2

Z L

0

dx

" 

∂φ̂(x, t)

∂t

!2

+

 

∂φ̂(x, t)

∂x

!2#

.

The expression 〈0| Ĥ |0〉 is evaluated using the mode expansion above and the relations

〈0| â−mâ+
n |0〉 = δmn, 〈0| â+

mâ
+
n |0〉 = 〈0| â−mâ−n |0〉 = 〈0| â+

mâ
−
n |0〉 = 0.

The first term in the Hamiltonian yields

〈0| 1

2

Z L

0

dx

 

∂φ̂(x, t)

∂t

!2

|0〉

= 〈0| 1

2

Z L

0

dx

"

r

2

L

∞
X

n=1

sinωnx√
2ωn

iωn

“

−â−n e−iωnt + â+
n e

iωnt
”

#2

|0〉

=
1

L

Z L

0

dx

∞
X

n=1

(sinωnx)
2

2ωn
ω2

n =
1

4

X

n

ωn.

The second term gives the same result, and we find

〈0| Ĥ |0〉 =
1

2

∞
X

n=1

ωn.

Therefore, the energy density (the energy per unit length) is given by Eq. (23).
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3.4 Regularization and renormalization

The zero-point energy density ε0 is divergent. However, in the presence of the
plates the energy density diverges in a different way than in free space because
ε0 = ε0(L) depends on the distance L between the plates. The zero-point energy
density in free space can be thought of as the limit of ε0(L) at L→ ∞,

ε
(free)
0 = lim

L→∞
ε0 (L) .

When the zero-point energy is renormalized in free space, the infinite contribu-

tion ε
(free)
0 is subtracted. Thus we are motivated to subtract ε

(free)
0 from the energy

density ε0(L) and to expect to find a finite difference ∆ε between these formally
infinite quantities,

∆ε (L) = ε0 (L) − ε
(free)
0 = ε0 (L) − lim

L→∞
ε0 (L) . (25)

In the remainder of the chapter we calculate this energy difference ∆ε(L).
Taken at face value, Eq. (25) is meaningless because the difference between two

infinite quantities is undefined. The standard way to deduce reasonable answers
from infinities is a regularization followed by a renormalization. A regularization
means introducing an extra parameter into the theory to make the divergent quan-
tity finite unless that parameter is set to (say) zero. Such regularization parame-
ters or cutoffs can be chosen in many ways. After the regularization, one derives
an asymptotic form of the divergent quantity at small values of the cutoff. This
asymptotic may contain divergent powers and logarithms of the cutoff as well as
finite terms. Renormalization means removing the divergent terms and leaving
only the finite terms in the expression. (Of course, a suitable justification must be
provided for subtracting the divergent terms.) After renormalization, the cutoff is
set to zero and the remaining terms yield the final result. If the cutoff function is
chosen incorrectly, the renormalization procedure will not succeed. It is usually
possible to motivate the correct choice of the cutoff by physical considerations.

We shall now apply this procedure to Eq. (25). As a first step, a cutoff must be
introduced into the divergent expression (23). One possibility is to replace ε0 by
the regularized quantity

ε0 (L;α) =
π

2L2

∞
∑

n=1

n exp
[

−nα
L

]

, (26)

where α is the cutoff parameter. The regularized series converges for α > 0, while
the original divergent expression is recovered in the limit α→ 0.

Remark: choosing the cutoff function. We regularize the series by the factor exp(−nα/L)
and not by exp(−nα) or exp(−nLα). A motivation is that the physically significant
quantity is ωn = πn/L, therefore the cutoff factor should be a function of ωn. Also,
renormalization will fail if the regularization is chosen incorrectly.

Now we need to evaluate the regularized quantity (26) and to analyze its asymp-
totic behavior at α→ 0. A straightforward computation gives

ε0 (L;α) = − π

2L

∂

∂α

∞
∑

n=1

exp
[

−nα
L

]

=
π

2L2

exp
(

−α
L

)

[

1 − exp
(

−α
L

)]2 .

At α→ 0 this expression can be expanded in a Laurent series,

ε0 (L;α) =
π

8L2

1

sinh2 α
2L

=
π

2α2
− π

24L2
+O

(

α2
)

. (27)
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The series (27) contains the singular term π
2α

−2, a finite term, and further terms
that vanish as α → 0. The crucial fact is that the singular term in Eq. (27) does not
depend on L. (This would not have happened if we chose the cutoff e.g. as e−nα.)
The limit L → ∞ in Eq. (25) is taken before the limit α → 0, so the divergent term
π
2α

−2 cancels and the renormalized value of ∆ε is finite,

∆εren(L) = lim
α→0

[

ε0 (L;α) − lim
L→∞

ε0 (L;α)
]

= − π

24L2
. (28)

The formula (28) is the main result of this chapter; the zero-point energy density
is nonzero in the presence of plates at x = 0 and x = L. The Casimir force between
the plates is

F = − d

dL
∆E = − d

dL
(L∆εren) = − π

24L2
.

Since the force is negative, the plates are pulled toward each other.

Remark: negative energy. Note that the zero-point energy density (28) is negative.
Quantum field theory generally admits quantum states with a negative expectation
value of energy.

4 Oscillator with varying frequency

A gravitational background influences quantum fields in such a way that the fre-
quencies ωk of the modes become time-dependent, ωk(t). We shall examine this
situation in detail in chapter 5. For now, let us consider a single harmonic oscilla-
tor with a time-dependent frequency ω(t).

4.1 Quantization

In the classical theory, the coordinate q(t) satisfies

q̈ + ω2(t)q = 0. (29)

An important example of a function ω(t) is shown Fig. 1. The frequency is approx-
imately constant except for a finite time interval, for instance ω ≡ ω0 for t ≤ t0 and
ω ≡ ω1 for t ≥ t1. It is usually impossible to find an exact solution of Eq. (29) in
such cases (of course, an approximate solution can be found numerically). How-
ever, the solutions in the regimes t ≤ t0 and t ≥ t1 are easy to obtain:

q(t) = Aeiω0t +Be−iω0t, t ≤ t0;

q(t) = Aeiω1t +Be−iω1t, t ≥ t1.

We shall be interested only in describing the behavior of the oscillator in these two
regimes5 which we call the “in” and “out” regimes.

The classical equation of motion (29) can be derived from the Lagrangian

L (t, q, q̇) =
1

2
q̇2 − 1

2
ω(t)2q2.

The corresponding canonical momentum is p = q̇, and the Hamiltonian is

H(p, q) =
p2

2
+ ω2(t)

q2

2
, (30)

5In the physics literature, the word regime stands for “an interval of values for a variable.” It should
be clear from the context which interval for which variable is implied.
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ω(t)

ω1

ω0

t0 t1

t

Figure 1: A frequency function ω(t) with “in” and “out” regimes (at t ≤ t0 and
t ≥ t1).

which depends explicitly on the time t. Therefore, we do not expect that energy
is conserved in this system. (There is an external agent that drives ω(t) and may
exchange energy with the oscillator.)

A time-dependent oscillator can be quantized using the technique of creation
and annihilation operators. By analogy with Eq. (6), we try the ansatz

q̂(t) =
1√
2

(

v(t)â+ + v∗(t)â−
)

, p̂(t) =
1√
2

(

v̇(t)â+ + v̇∗(t)â−
)

, (31)

where v(t) is a complex-valued function that replaces eiωt, while the operators
â± are time-independent. The present task is to choose the function v(t) and the
operators â± in an appropriate way. We call v(t) the mode function because we
shall later apply the same decomposition to modes of a quantum field.

Since q̂(t) must be a solution of Eq. (29), we find that v(t) must satisfy the same
equation,

v̈ + ω2(t)v = 0. (32)

Furthermore, the canonical commutation relation [q̂(t), p̂(t)] = i entails

[

â−, â+
]

=
2i

v̇v∗ − v̇∗v
.

Note that the expression
v̇v∗ − v̇∗v ≡W [v, v∗]

is the Wronskian of the solutions v(t) and v∗(t), and it is well known that W =
const. We may therefore normalize the mode function v(t) such that

W [v, v∗] = v̇v∗ − v̇∗v = 2i, (33)

which will yield the standard commutation relations for â±,

[

â−, â+
]

= 1.

We can then postulate the existence of the ground state |0〉 such that â− |0〉 = 0.
Excited states |n〉 (n = 1, 2, ...) are defined in the standard way by Eq. (8).

With the normalization (33), the creation and annihilation operators are ex-
pressed through the canonical variables as

â− ≡ v̇(t)q̂(t) − v(t)p̂(t)

i
√

2
, â+ ≡ − v̇

∗(t)q̂(t) − v∗(t)p̂(t)

i
√

2
. (34)

(Note that the l.h.s. of Eq. (34) are time-independent because the corresponding
r.h.s. are Wronskians.) In this way, a choice of the mode function v(t) defines the
operators â± and the states |0〉, |1〉, ...
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It is clear that different choices of v(t) will in general define different operators
â± and different states |0〉, |1〉, ... It is not clear, a priori, which choice of v(t) cor-
responds to the “correct” ground state of the oscillator. The choice of v(t) will be
studied in the next section.

Properties of mode functions
Here is a summary of some elementary properties of a time-dependent oscillator

equation
ẍ+ ω2(t)x = 0. (35)

This equation has a two-dimensional space of solutions. Any two linearly independent
solutions x1(t) and x2(t) are a basis in that space. The expression

W [x1, x2] ≡ ẋ1x2 − x1ẋ2

is called the Wronskian of the two functions x1(t) and x2(t). It is easy to see that
the Wronskian W [x1, x2] is time-independent if x1,2(t) satisfy Eq. (35). Moreover,
W [x1, x2] 6= 0 if and only if x1(t) and x2(t) are two linearly independent solutions.

If {x1(t), x2(t)} is a basis of solutions, it is convenient to define the complex func-
tion v(t) ≡ x1(t) + ix2(t). Then v(t) and v∗(t) are linearly independent and form a
basis in the space of complex solutions of Eq. (35). It is easy to check that

Im(v̇v∗) =
v̇v∗ − v̇∗v

2i
=

1

2i
W [v, v∗] = −W [x1, x2] 6= 0,

and thus the quantity Im(v̇v∗) is a nonzero real constant. If v(t) is multiplied by a
constant, v(t) → λv(t), the Wronskian W [v, v∗] changes by the factor |λ|2. Therefore
we may normalize v(t) to a prescribed value of Im(v̇v∗) by choosing the constant λ, as
long as v and v∗ are linearly independent solutions so that W [v, v∗] 6= 0.

A complex solution v(t) of Eq. (35) is an admissible mode function if v(t) is nor-
malized by the condition Im(v̇v∗) = 1. It follows that any solution v(t) normalized by
Im(v̇v∗) = 1 is necessarily complex-valued and such that v(t) and v∗(t) are a basis of
linearly independent complex solutions of Eq. (35).

4.2 Choice of mode function

We have seen that different choices of the mode function v(t) lead to different defi-
nitions of the operators â± and thus to different “canditate ground states” |0〉. The
true ground state of the oscillator is the lowest-energy state and not merely some
state |0〉 satisfying â− |0〉 = 0, where â− is some arbitrary operator. Therefore we

may try to choose v(t) such that the mean energy 〈0| Ĥ |0〉 is minimized.
For any choice of the mode function v(t), the Hamiltonian is expressed through

the operators â± as

Ĥ =
|v̇|2 + ω2 |v|2

4

(

2â+â− + 1
)

+
v̇2 + ω2v2

4
â+â+ +

v̇∗2 + ω2v∗2

4
â−â−. (36)

Derivation of Eq. (36)
In the canonical variables, the Hamiltonian is

Ĥ =
1

2
p̂2 +

1

2
ω2(t)q̂2.

Now we expand the operators p̂, q̂ through the mode functions using Eq. (31) and the
commutation relation

ˆ

â+, â−
˜

= 1. For example, the term p̂2 gives

p̂2 =
1√
2

`

v̇(t)â+ + v̇∗(t)â−
´ 1√

2

`

v̇(t)â+ + v̇∗(t)â−
´

=
1

2

`

v̇2â+â+ + v̇v̇∗
`

2â+â− + 1
´

+ v̇∗2â−â−
´

.
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The term q̂2 gives

q̂2 =
1√
2

`

v(t)â+ + v∗(t)â−
´ 1√

2

`

v(t)â+ + v∗(t)â−
´

=
1

2

`

v2â+â+ + vv∗
`

2â+â− + 1
´

+ v∗2â−â−
´

.

After some straightforward algebra we obtain the required result.

It is easy to see from Eq. (36) that the mean energy at time t is given by

E(t) ≡ 〈0| Ĥ(t) |0〉 =
|v̇(t)|2 + ω2(t) |v(t)|2

4
. (37)

We would like to find the mode function v(t) that minimizes the above quantity.
Note that E(t) is time-dependent, so we may first try to minimize E(t0) at a fixed
time t0.

The choice of the mode function v(t) may be specified by a set of initial condi-
tions at t = t0,

v(t0) = q, v̇(t0) = p,

where the parameters p and q are complex numbers satisfying the normalization
constraint which follows from Eq. (33),

q∗p− p∗q = 2i. (38)

Now we need to find such p and q that minimize the expression |p|2 + ω2(t0) |q|2.
This is a straightforward exercise (see below) which yields, for ω(t0) > 0, the fol-
lowing result:

v(t0) =
1

√

ω(t0)
, v̇(t0) = i

√

ω(t0) = iω(t0)v(t0). (39)

If, on the other hand, ω2(t0) < 0 (i.e. ω is imaginary), there is no minimum. For
now, we shall assume that ω(t0) is real. Then the mode function satisfying Eq. (39)
will define the operators â± and the state |t00〉 such that the instantaneous energy
E(t0) has the lowest possible value Emin = 1

2ω(t0). The state |t00〉 is called the
instantaneous ground state at time t = t0.

Derivation of Eq. (39)
If some p and q minimize |p|2 +ω2 |q|2, then so do eiλp and eiλq for arbitrary real λ;

this is the freedom of choosing the overall phase of the mode function. We may choose
this phase to make q real and write p = p1 + ip2 with real p1,2. Then Eq. (38) yields

q =
2i

p− p∗
=

1

p2
⇒ 4E(t0) = p2

1 + p2
2 +

ω2(t0)

p2
2

. (40)

If ω2(t0) > 0, the function E (p1, p2) has a minimum with respect to p1,2 at p1 = 0 and
p2 =

p

ω(t0). Therefore the desired initial conditions for the mode function are given
by Eq. (39).

On the other hand, if ω2(t0) < 0 the function Ek in Eq. (40) has no minimum
because the expression p2

2 + ω2(t0)p
−2
2 varies from −∞ to +∞. In that case the instan-

taneous lowest-energy ground state does not exist.

4.3 “In” and “out” states

Let us now consider the frequency function ω(t) shown in Fig. 1. It is easy to see
that the lowest-energy state is given by the mode function vin(t) = eiω0t in the
“in” regime (t ≤ t0) and by vout(t) = eiω1t in the “out” regime (t ≥ t1). However,
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note that vin(t) 6= eiω0t for t > t0; instead, vin(t) is a solution of Eq. (29) with the
initial conditions (39) at t = t0. Similarly, vout(t) 6= eiω1t for t < t1. While exact
solutions for vin(t) and vout(t) are in general not available, we may still analyze the
relationship between these solutions in the “in” and “out” regimes.

Since the solutions e±iω1t are a basis in the space of solutions of Eq. (35), we
may write

vin(t) = αvout(t) + βv∗out(t), (41)

where α and β are time-independent constants. The relationship (41) between the
mode functions is an example of a Bogolyubov transformation (see Sec. 2.2). Us-
ing Eq. (33) for vin(t) and vout(t), it is straightforward to derive the property

|α|2 − |β|2 = 1. (42)

For a general ω(t), we will have β 6= 0 and hence there will be no single mode
function v(t) matching both vin(t) and vout(t).

Each choice of the mode function v(t) defines the corresponding creation and
annihilation operators â±. Let us denote by â±in the operators defined using the
mode function vin(t) and vout(t), respectively. It follows from Eqs. (34) and (41)
that

â−in = αâ−out − βâ+
out.

The inverse relation is easily found using Eq. (42),

â−out = α∗â−in + βâ+
in. (43)

Since generally β 6= 0, we cannot define a single set of operators â± which will
define the ground state |0〉 for all times.

Moreover, in the intermediate regime where ω(t) is not constant, an instanta-
neous ground state |t0〉 defined at time t will, in general, not be a ground state at
the next moment, t + ∆t. Therefore, such a state |t0〉 cannot be trusted as a phys-
ically motivated ground state. However, if we restrict our attention only to the
“in” regime, the mode function vin(t) defines a perfectly sensible ground state |0in〉
which remains the ground state for all t ≤ t0. Similarly, the mode function vout(t)
defines the ground state |0out〉.

Since we are using the Heisenberg picture, the quantum state |ψ〉 of the oscil-
lator is time-independent. It is reasonable to plan the following experiment. We
prepare the oscillator in its ground state |ψ〉 = |0in〉 at some early time t < t0 within
the “in” regime. Then we let the oscillator evolve until the time t = t1 and compare
its quantum state (which remains |0in〉) with the true ground state, |0out〉, at time
t > t1 within the “out” regime.

In the “out” regime, the state |0in〉 is not the ground state any more, and thus it
must be a superposition of the true ground state |0out〉 and the excited states |nout〉
defined using the “out” creation operator â+

out,

|nout〉 =
1√
n!

(

â+
out

)n |0out〉 , n = 0, 1, 2, ...

It can be easily verified that the vectors |nout〉 are eigenstates of the Hamiltonian
for t ≥ t1 (but not for t < t1):

Ĥ(t) |nout〉 = ω1

(

n+
1

2

)

|nout〉 , t ≥ t1.

Similarly, the excited states |nin〉 may be defined through the creation operator â+
in.

The states |nin〉 are interpreted as n-particle states of the oscillator for t ≤ t0, while
for t ≥ t1 the n-particle states are |nout〉.
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Remark: interpretation of the “in” and “out” states. We are presently working in the
Heisenberg picture where quantum states are time-independent and operators depend
on time. One may prepare the oscillator in a state |ψ〉, and the state of the oscillator re-
mains the same throughout all time t. However, the physical interpretation of this state
changes with time because the state |ψ〉 is interpreted with help of the time-dependent

operators Ĥ(t), â−(t), etc. For instance, we found that at late times (t ≥ t1) the vector
|0in〉 is not the lowest-energy state any more. This happens because the energy of the
system changes with time due to the external force that drives ω(t). Without this force,
we would have â−in = â−out and the state |0in〉 would describe the physical vacuum at all
times.

4.4 Relationship between “in” and “out” states

The states |nout〉, where n = 0, 1, 2, ..., form a complete basis in the Hilbert space
of the harmonic oscillator. However, the set of states |nin〉 is another complete
basis in the same space. Therefore the vector |0in〉 must be expressible as a linear
combination of the “out” states,

|0in〉 =

∞
∑

n=0

Λn |nout〉 , (44)

where Λn are suitable coefficients. If the mode functions are related by a Bo-
golyubov transformation (41), one can show that these coefficients Λn are given
by

Λ2n =

[

1 −
∣

∣

∣

∣

β

α

∣

∣

∣

∣

2
]1/4

(

β

α

)n
√

(2n− 1)!!

(2n)!!
, Λ2n+1 = 0. (45)

The relation (44) shows that the early-time ground state is a superposition of

excited states at late times, having the probability |Λn|2 for the occupation number
n. We thus conclude that the presence of an external influence leads to excitations
of the oscillator. (Later on, when we consider field theory, such excitations will be
interpreted as particle production.) In the present case, the influence of external
forces on the oscillator consists of the changing frequency ω(t), which is formally
a parameter of the Lagrangian. For this reason, the excitations arising in a time-
dependent oscillator are called parametric excitations.

Finally, let us compute the expected particle number in the “out” regime, as-
suming that the oscillator is in the state |0in〉. The expectation value of the number

operator N̂out ≡ â+
outâ

−
out in the state |0in〉 is easily found using Eq. (43):

〈0in| â+
outâ

−
out |0in〉 = 〈0in|

(

αâ+
in + β∗â−in

) (

α∗â−in + βâ+
in

)

|0in〉 = |β|2 .

Therefore, a nonzero coefficient β signifies the presence of particles in the “out”
region.

Derivation of Eq. (45)
In order to find the coefficients Λn, we need to solve the equation

0 = â−in |0in〉 =
`

αâ−out − βâ+
out

´

∞
X

n=0

Λn |nout〉 .

Using the known properties

â+ |n〉 =
√
n+ 1 |n+ 1〉 , â− |n〉 =

√
n |n− 1〉 ,

we obtain the recurrence relation

Λn+2 = Λn
β

α

r

n+ 1

n+ 2
; Λ1 = 0.
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Therefore, only even-numbered Λ2n are nonzero and may be expressed through Λ0 as
follows,

Λ2n = Λ0

„

β

α

«n
s

1 · 3 · ... · (2n− 1)

2 · 4 · ... · (2n)
≡ Λ0

„

β

α

«n
s

(2n− 1)!!

(2n)!!
, n ≥ 1.

For convenience, one defines (−1)!! = 1, so the above expression remains valid also for
n = 0.

The value of Λ0 is determined from the normalization condition, 〈0in| 0in〉 = 1,
which can be rewritten as

|Λ0|2
∞
X

n=0

˛

˛

˛

˛

β

α

˛

˛

˛

˛

2n
(2n− 1)!!

(2n)!!
= 1.

The infinite sum can be evaluated as follows. Let f(z) be an auxiliary function defined
by the series

f(z) ≡
∞
X

n=0

z2n (2n− 1)!!

(2n)!!
.

At this point one can guess that this is a Taylor expansion of f(z) =
`

1 − z2
´−1/2

; then

one obtains Λ0 = 1/
p

f(z) with z ≡ |β/α|. If we would like to avoid guessing, we
could manipulate the above series in order to derive a differential equation for f(z):

f(z) = 1 +

∞
X

n=1

z2n 2n− 1

2n

(2n− 3)!!

(2n− 2)!!
= 1 +

∞
X

n=1

z2n (2n− 3)!!

(2n− 2)!!
−

∞
X

n=1

z2n

2n

(2n− 3)!!

(2n− 2)!!

= 1 + z2f(z) −
∞
X

n=1

z2n

2n

(2n− 3)!!

(2n− 2)!!
.

Taking d/dz of both parts, we have

d

dz

ˆ

1 + z2f(z) − f(z)
˜

=
∞
X

n=1

z2n−1 (2n− 3)!!

(2n− 2)!!
= zf(z),

hence f(z) satisfies

d

dz

ˆ

(z2 − 1)f(z)
˜

=
`

z2 − 1
´ df

dz
+ 2zf(z) = zf(z); f(0) = 1.

The solution is

f(z) =
1√

1 − z2
.

Substituting z ≡ |β/α|, we obtain the required result,

Λ0 =

"

1 −
˛

˛

˛

˛

β

α

˛

˛

˛

˛

2
#1/4

.

4.5 Quantum-mechanical analogy

The time-dependent oscillator equation (35) is formally similar to the stationary
Schrödinger equation for the wave function ψ(x) of a quantum particle in a one-
dimensional potential V (x),

d2ψ

dx2
+ (E − V (x))ψ = 0.

The two equations are related by the replacements t→ x and ω2(t) → E − V (x).
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Figure 2: Quantum-mechanical analogy: motion in a potential V (x).

To illustrate the analogy, let us consider the case when the potential V (x) is
almost constant for x < x1 and for x > x2 but varies in the intermediate region
(see Fig. 2). An incident wave ψ(x) = exp(−ipx) comes from large positive x and is
scattered off the potential. A reflected wave ψR(x) = R exp(ipx) is produced in the
region x > x2 and a transmitted wave ψT (x) = T exp(−ipx) in the region x < x1.
For most potentials, the reflection amplitude R is nonzero. The conservation of

probability gives the constraint |R|2 + |T |2 = 1.
The wavefunction ψ(x) behaves similarly to the mode function v(t) in the case

when ω(t) is approximately constant at t ≤ t0 and at t ≥ t1. If the wavefunction
represents a pure incoming wave x < x1, then at x > x2 the function ψ(x) will
be a superposition of positive and negative exponents exp (±ikx). This is the phe-
nomenon known as over-barrier reflection: there is a small probability that the
particle is reflected by the potential, even though the energy is above the height of
the barrier. The relation betweenR and T is similar to the normalization condition
(42) for the Bogolyubov coefficients. The presence of the over-barrier reflection
(R 6= 0) is analogous to the presence of particles in the “out” region (β 6= 0).

5 Scalar field in expanding universe

Let us now turn to the situation when quantum fields are influenced by strong
gravitational fields. In this chapter, we use units where c = G = 1, where G is
Newton’s constant.

5.1 Curved spacetime

Einstein’s theory of gravitation (General Relativity) is based on the notion of
curved spacetime, i.e. a manifold with arbitrary coordinates x ≡ {xµ} and a met-
ric gµν(x) which replaces the flat Minkowski metric ηµν . The metric defines the
interval

ds2 = gµνdx
µdxν ,

which describes physically measured lengths and times. According to the Einstein
equation, the metric gµν(x) is determined by the distribution of matter in the entire
universe.

Here are some basic examples of spacetimes. In the absence of matter, the met-
ric is equal to the Minkowski metric ηµν = diag (1,−1,−1,−1) (in Cartesian coor-
dinates). In the presence of a single black hole of massM , the metric can be written
in spherical coordinates as

ds2 =

(

1 − 2M

r

)

dt2 −
(

1 − 2M

r

)−1

dr2 − r2
[

dθ2 + sin2 θdφ2
]

.
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Finally, a certain class of spatially homogeneous and isotropic distributions of mat-
ter in the universe yields a metric of the form

ds2 = dt2 − a2(t)
[

dx2 + dy2 + dy2
]

, (46)

where a(t) is a certain function called the scale factor. (The interpretation is that
a(t) “scales” the flat metric dx2 + dy2 + dz2 at different times.) Spacetimes with
metrics of the form (46) are called Friedmann-Robertson-Walker (FRW) spacetimes
with flat spatial sections (in short, flat FRW spacetimes). Note that it is only the
three-dimensional spatial sections which are flat; the four-dimensional geometry of
such spacetimes is usually curved. The class of flat FRW spacetimes is important in
cosmology because its geometry agrees to a good precision with the present results
of astrophysical measurements.

In this course, we shall not be concerned with the task of obtaining the metric.
It will be assumed that a metric gµν(x) is already known in some coordinates {xµ}.

5.2 Scalar field in cosmological background

Presently, we shall study the behavior of a quantum field in a flat FRW spacetime
with the metric (46). In Einstein’s General Relativity, every kind of energy influ-
ences the geometry of spacetime. However, we shall treat the metric gµν(x) as fixed
and disregard the influence of fields on the geometry.

A minimally coupled, free, real, massive scalar field φ(x) in a curved spacetime
is described by the action

S =

∫ √−gd4x

[

1

2
gαβ (∂αφ) (∂βφ) − 1

2
m2φ2

]

. (47)

(Note the difference between Eq. (47) and Eq. (11): the Minkowski metric ηµν is
replaced by the curved metric gµν , and the integration uses the covariant volume
element

√−gd4x. This is the minimal change necessary to make the theory of the
scalar field compatible with General Relativity.) The equation of motion for the
field φ is derived straightforwardly as

gµν∂µ∂νφ+
1√−g (∂νφ) ∂µ

(

gµν√−g
)

+m2φ = 0. (48)

This equation can be rewritten more concisely using the covariant derivative cor-
responding to the metric gµν ,

gµν∇µ∇νφ+m2φ = 0,

which shows explicitly that this is a generalization of the Klein-Gordon equation
to curved spacetime.

We cannot directly use the quantization technique developed for fields in the
flat spacetime. First, let us carry out a few mathematical transformations to sim-
plify the task.

The metric (46) for a flat FRW spacetime can be simplified if we replace the
coordinate t by the conformal time η,

η(t) ≡
∫ t

t0

dt

a(t)
,

where t0 is an arbitrary constant. The scale factor a(t) must be expressed through
the new variable η; let us denote that function again by a(η). In the coordinates
(x, η), the interval is

ds2 = a2(η)
[

dη2 − dx2
]

, (49)
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so the metric is conformally flat (equal to the flat metric multiplied by a factor):
gµν = a2ηµν , gµν = a−2ηµν .

Further, it is convenient to introduce the auxiliary field χ ≡ a(η)φ. Then one
can show that the action (47) can be rewritten in terms of the field χ as follows,

S =
1

2

∫

d3x dη
(

χ′2 − (∇χ)2 −m2
eff(η)χ

2
)

, (50)

where the prime ′ denotes ∂/∂η, and meff is the time-dependent effective mass

m2
eff(η) ≡ m2a2 − a′′

a
. (51)

The action (50) is very similar to the action (11), except for the presence of the
time-dependent mass.

Derivation of Eq. (50)
We start from Eq. (47). Using the metric (49), we have

√−g = a4 and gαβ = a−2ηαβ .
Then

√
−gm2φ2 = m2a2χ2,

√
−g gαβφ,αφ,β = a2

`

φ′2 − (∇φ)2
´

.

Substituting φ = χ/a, we get

a2φ′2 = χ′2 − 2χχ′ a
′

a
+ χ2

„

a′

a

«2

= χ′2 + χ2 a
′′

a
−
»

χ2 a
′

a

–′

.

The total time derivative term can be omitted from the action, and we obtain the re-
quired expression.

Thus, the dynamics of a scalar field φ in a flat FRW spacetime is mathematically
equivalent to the dynamics of the auxiliary field χ in the Minkowski spacetime. All
the information about the influence of gravitation on the field φ is encapsulated in
the time-dependent mass meff(η) defined by Eq. (51). Note that the action (50) is
explicitly time-dependent, so the energy of the field χ is generally not conserved.
We shall see that in quantum theory this leads to the possibility of particle creation;
the energy for new particles is supplied by the gravitational field.

5.3 Mode expansion

It follows from the action (50) that the equation of motion for χ(x, η) is

χ′′ − ∆χ+

(

m2a2 − a′′

a

)

χ = 0. (52)

Expanding the field χ in Fourier modes,

χ (x, η) =

∫

d3k

(2π)3/2
χk(η)eik·x, (53)

we obtain from Eq. (52) the decoupled equations of motion for the modes χk(η),

χ′′
k

+

[

k2 +m2a2(η) − a′′

a

]

χk ≡ χ′′
k

+ ω2
k(η)χk = 0. (54)

All the modes χk(η) with equal |k| = k are complex solutions of the same equa-
tion (54). This equation describes a harmonic oscillator with a time-dependent
frequency. Therefore, we may apply the techniques we developed in chapter 4.

23



We begin by choosing a mode function vk(η), which is a complex-valued solu-
tion of

v′′k + ω2
k(η)vk = 0, ω2

k(η) ≡ k2 +m2
eff(η). (55)

Then, the general solution χk(η) is expressed as a linear combination of vk and v∗k
as

χk(η) =
1√
2

[

a−
k
v∗k(η) + a+

−k
vk(η)

]

, (56)

where a±
k

are complex constants of integration that depend on the vector k (but
not on η). The index −k in the second term of Eq. (56) and the factor 1√

2
are chosen

for later convenience.
Since χ is real, we have χ∗

k
= χ−k. It follows from Eq. (56) that a+

k
=
(

a−
k

)∗
.

Combining Eqs. (53) and (56), we find

χ (x, η) =

∫

d3k

(2π)3/2

1√
2

[

a−
k
v∗k(η) + a+

−k
vk(η)

]

eik·x

=

∫

d3k

(2π)3/2

1√
2

[

a−
k
v∗k(η)eik·x + a+

k
vk(η)e−ik·x] . (57)

Note that the integration variable k was changed (k → −k) in the second term of
Eq. (57) to make the integrand a manifestly real expression. (This is done only for
convenience.)

The relation (57) is called the mode expansion of the field χ (x, η) w.r.t. the
mode functions vk(η). At this point the choice of the mode functions is still arbi-
trary.

The coefficients a±
k

are easily expressed through χk(η) and vk(η):

a−
k

=
√

2
v′kχk − vkχ

′
k

v′kv
∗
k − vkv∗′k

=
√

2
W [vk, χk]

W [vk, v∗k]
; a+

k
=
(

a−
k

)∗
. (58)

Note that the numerators and denominators in Eq. (58) are time-independent since
they are Wronskians of solutions of the same oscillator equation.

5.4 Quantization of scalar field

The field χ(x) can be quantized directly through the mode expansion (57), which
can be used for quantum fields in the same way as for classical fields. The mode
expansion for the field operator χ̂ is found by replacing the constants a±

k
in Eq. (57)

by time-independent operators â±
k

:

χ̂ (x, η) =

∫

d3k

(2π)3/2

1√
2

(

eik·xv∗k(η)â−
k

+ e−ik·xvk(η)â+
k

)

, (59)

where vk(η) are mode functions obeying Eq. (55). The operators â±
k

satisfy the
usual commutation relations for creation and annihilation operators,

[

â−
k
, â+

k′

]

= δ(k − k′),
[

â−
k
, â−

k′

]

=
[

â+
k
, â+

k′

]

= 0. (60)

The commutation relations (60) are consistent with the canonical relations

[χ(x1, η), χ
′(x2, η)] = iδ(x1 − x2)

only if the mode functions vk(η) are normalized by the condition

Im (v′kv
∗
k) =

v′kv
∗
k − vkv

′∗
k

2i
≡ W [vk, v

∗
k]

2i
= 1. (61)
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Therefore, quantization of the field χ̂ can be accomplished by postulating the mode
expansion (59), the commutation relations (60) and the normalization (61). The
choice of the mode functions vk(η) will be made later on.

The mode expansion (59) can be visualized as the general solution of the field
equation (52), where the operators â±

k
are integration constants. The mode expan-

sion can also be viewed as a definition of the operators â±
k

through the field operator
χ̂ (x, η). Explicit formulae relating â±

k
to χ̂ and π̂ ≡ χ̂′ are analogous to Eq. (58).

Clearly, the definition of â±
k

depends on the choice of the mode functions vk(η).

5.5 Vacuum state and particle states

Once the operators â±
k

are determined, the vacuum state |0〉 is defined as the eigen-
state of all annihilation operators â−

k
with eigenvalue 0, i.e. â−

k
|0〉 = 0 for all k. An

excited state |mk1
, nk2

, ...〉 with the occupation numbers m,n, ... in the modes χk1
,

χk2
, ..., is constructed by

|mk1
, nk2

, ...〉 ≡ 1√
m!n!...

[(

â+
k1

)m (
â+
k2

)n
...
]

|0〉 . (62)

We write |0〉 instead of |0k1
, 0k2

, ...〉 for brevity. An arbitrary quantum state |ψ〉 is a
linear combination of these states,

|ψ〉 =
∑

m,n,...

Cmn... |mk1
, nk2

, ...〉 .

If the field is in the state |ψ〉, the probability for measuring the occupation number

m in the mode χk1
, the number n in the mode χk2

, etc., is |Cmn...|2.
Let us now comment on the role of the mode functions. Complex solutions

vk(η) of a second-order differential equation (55) with one normalization condi-
tion (61) are parametrized by one complex parameter. Multiplying vk(η) by a con-
stant phase eiα introduces an extra phase e±iα in the operators â±k , which can be
compensated by a constant phase factor eiα in the state vectors |0〉 and |mk1

, nk2
, ...〉.

There remains one real free parameter that distinguishes physically inequivalent
mode functions. With each possible choice of the functions vk(η), the operators â±

k

and consequently the vacuum state and particle states are different. As long as the
mode functions satisfy Eqs. (55) and (61), the commutation relations (60) hold and
thus the operators â±

k
formally resemble the creation and annihilation operators for

particle states. However, we do not yet know whether the operators â±
k

obtained
with some choice of vk(η) actually correspond to physical particles and whether
the quantum state |0〉 describes the physical vacuum. The correct commutation
relations alone do not guarantee the validity of the physical interpretation of the
operators â±

k
and of the state |0〉. For this interpretation to be valid, the mode func-

tions must be appropriately selected; we postpone the consideration of this important
issue until Sec. 5.8 below. For now, we shall formally study the consequences of
choosing several sets of mode functions to quantize the field φ.

5.6 Bogolyubov transformations

Suppose two sets of isotropic mode functions uk(η) and vk(η) are chosen. Since uk

and u∗k are a basis, the function vk is a linear combination of uk and u∗k, e.g.

v∗k(η) = αku
∗
k(η) + βkuk(η), (63)

with η-independent complex coefficients αk and βk. If both sets vk(η) and uk(η)
are normalized by Eq. (61), it follows that the coefficients αk and βk satisfy

|αk|2 − |βk|2 = 1. (64)
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In particular, |αk| ≥ 1.

Derivation of Eq. (64)
We suppress the index k for brevity. The normalization condition for u(η) is

u∗u′ − uu′∗ = 2i.

Expressing u through v as given, we obtain
`

|α|2 − |β|2
´ `

v∗v′ − vv′∗
´

= 2i.

The formula (64) follows from the normalization of v(η).

Using the mode functions uk(η) instead of vk (η), one obtains an alternative

mode expansion which defines another set b̂±
k

of creation and annihilation opera-
tors,

χ̂ (x, η) =

∫

d3k

(2π)3/2

1√
2

(

eik·xu∗k(η)b̂−
k

+ e−ik·xuk(η)b̂+
k

)

. (65)

The expansions (59) and (65) express the same field χ̂ (x, η) through two different
sets of functions, so the k-th Fourier components of these expansions must agree,

eik·x
[

u∗k(η)b̂−
k

+ uk(η)b̂+−k

]

= eik·x [v∗k(η)â−
k

+ vk(η)â+
−k

]

.

A substitution of vk through uk using Eq. (63) gives the following relation between

the operators b̂±
k

and â±
k

:

b̂−
k

= αkâ
−
k

+ β∗
k â

+
−k
, b̂+

k
= α∗

kâ
+
k

+ βkâ
−
−k
. (66)

The relation (66) and the complex coefficients αk, βk are called respectively the
Bogolyubov transformation and the Bogolyubov coefficients.6

The two sets of annihilation operators â−
k

and b̂−
k

define the corresponding
vacua

∣

∣

(a)0
〉

and
∣

∣

(b)0
〉

, which we call the “a-vacuum” and the “b-vacuum.” Two
parallel sets of excited states are built from the two vacua using Eq. (62). We refer
to these states as a-particle and b-particle states. So far the physical interpretation
of the a- and b-particles remains unspecified. Later on, we shall apply this for-
malism to study specific physical effects and the interpretation of excited states
corresponding to various mode functions will be explained. At this point, let us
only remark that the b-vacuum is in general a superposition of a-states, similarly
to what we found in Sec. 4.4.

5.7 Mean particle number

Let us calculate the mean number of b-particles of the mode χk in the a-vacuum

state. The expectation value of the b-particle number operator N̂
(b)
k

= b̂+
k
b̂−
k

in the
state

∣

∣

(a)0
〉

is found using Eq. (66):

〈

(a)0
∣

∣ N̂ (b)
∣

∣

(a)0
〉

=
〈

(a)0
∣

∣ b̂+
k
b̂−
k

∣

∣

(a)0
〉

=
〈

(a)0
∣

∣

(

α∗
kâ

+
k

+ βkâ
−
−k

) (

αkâ
−
k

+ β∗
k â

+
−k

) ∣

∣

(a)0
〉

=
〈

(a)0
∣

∣

(

βkâ
−
−k

) (

β∗
k â

+
−k

)
∣

∣

(a)0
〉

= |βk|2 δ(3)(0). (67)

The divergent factor δ(3)(0) is a consequence of considering an infinite spatial vol-
ume. This divergent factor would be replaced by the box volume V if we quantized
the field in a finite box. Therefore we can divide by this factor and obtain the mean
density of b-particles in the mode χk,

nk = |βk|2 . (68)

6The pronunciation is close to the American “bogo-lube-of” with the third syllable stressed.
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The Bogolyubov coefficient βk is dimensionless and the density nk is the mean
number of particles per spatial volume d3x and per wave number d3k, so that
∫

nkd
3k d3x is the (dimensionless) total mean number of b-particles in the a-vacuum

state.
The combined mean density of particles in all modes is

∫

d3k |βk|2. Note that
this integral might diverge, which would indicate that one cannot disregard the
backreaction of the produced particles on other fields and on the metric.

5.8 Instantaneous lowest-energy vacuum

In the theory developed so far, the particle interpretation depends on the choice
of the mode functions. For instance, the a-vacuum

∣

∣

(a)0
〉

defined above is a state
without a-particles but with b-particle density nk in each mode χk. A natural ques-
tion to ask is whether the a-particles or the b-particles are the correct representation
of the observable particles. The problem at hand is to determine the mode func-
tions that describe the “actual” physical vacuum and particles.

Previously, we defined the vacuum state as the eigenstate with the lowest en-
ergy. However, in the present case the Hamiltonian explicitly depends on time
and thus does not have time-independent eigenstates that could serve as vacuum
states.

One possible prescription for the vacuum state is to select a particular moment
of time, η = η0, and to define the vacuum |η0

0〉 as the lowest-energy eigenstate of

the instantaneous Hamiltonian Ĥ(η0). To obtain the mode functions that describe
the vacuum |η0

0〉, we first compute the expectation value
〈

(v)0
∣

∣ Ĥ(η0)
∣

∣

(v)0
〉

in the

vacuum state
∣

∣

(v)0
〉

determined by arbitrarily chosen mode functions vk(η). Then
we can minimize that expectation value with respect to all possible choices of vk(η).

(A standard result in linear algebra is that the minimization of 〈x| Â |x〉 with respect
to all normalized vectors |x〉 is equivalent to finding the eigenvector |x〉 of the

operator Â with the smallest eigenvalue.) This computation is analogous to that
of Sec. 4.2, and the result is similar to Eq. (39): If ω2

k(η0) > 0, the required initial
conditions for the mode functions are

vk (η0) =
1

√

ωk(η0)
, v′k(η0) = i

√

ωk(η0) = iωkvk(η0). (69)

If ω2
k(η0) < 0, the instantaneous lowest-energy vacuum state does not exist.
For a scalar field in the Minkowski spacetime, ωk is time-independent and the

prescription (69) yields the standard mode functions

vk(η) =
1√
ωk
eiωkη,

which remain the vacuum mode functions at all times. But this is not the case
for a time-dependent gravitational background, because then ωk(η) 6= const and
the mode function selected by the initial conditions (69) imposed at a time η0 will
generally differ from the mode function selected at another time η1 6= η0. In other
words, the state |η0

0〉 is not an energy eigenstate at time η1. In fact, one can show
that there are no states which remain instantaneous eigenstates of the Hamiltonian
at all times.

5.9 Computation of Bogolyubov coefficients

Computations of Bogolyubov coefficients requires knowledge of solutions of Eq. (55),
which is an equation of a harmonic oscillator with a time-dependent frequency,
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with specified initial conditions. Suppose that vk(η) and uk(η) are mode functions
describing instantaneous lowest-energy states defined at times η = η0 and η = η1.
To determine the Bogolyubov coefficients αk and βk connecting these mode func-
tions, it is necessary to know the functions vk(η) and uk(η) and their derivatives at
only one value of η, e.g. at η = η0. From Eq. (63) and its derivative at η = η0, we
find

v∗k (η0) = αku
∗
k (η0) + βkuk (η0) ,

v∗′k (η0) = αku
∗′
k (η0) + βku

′
k (η0) .

This system of equations can be solved for αk and βk using Eq. (61):

αk =
u′kv

∗
k − ukv

∗′
k

2i

∣

∣

∣

∣

η0

, β∗
k =

u′kvk − ukv
′
k

2i

∣

∣

∣

∣

η0

. (70)

These relations hold at any time η0 (note that the numerators are Wronskians and
thus are time-independent). For instance, knowing only the asymptotics of vk(η)
and uk(η) at η → −∞ would suffice to compute αk and βk.

A well-known method to obtain an approximate solution of equations of the
type (55) is the WKB approximation, which gives the approximate solution satis-
fying the condition (69) at time η = η0 as

vk(η) ≈ 1
√

ωk(η)
exp

[

i

∫ η

η0

ωk(η1)dη1

]

. (71)

However, it is straightforward to see that the approximation (71) satisfies the in-
stantaneous minimum-energy condition at every other time η 6= η0 as well. In
other words, within the WKB approximation, uk(η) ≈ vk(η). Therefore, if we use
the WKB approximation to compute the Bogolyubov coefficient between instan-
taneous vacuum states, we shall obtain the incorrect result βk = 0. The WKB
approximation is insufficiently precise to capture the difference between the in-
stantaneous vacuum states defined at different times.

One can use the following method to obtain a better approximation to the mode
function vk(η). Let us focus attention on one mode and drop the index k. Introduce
a new variable Z(η) instead of v(η) as follows,

v(η) =
1

√

ω(η0)
exp

[

i

∫ η

η0

ω(η1)dη1 +

∫ η

η0

Z(η1)dη1

]

;
v′

v
= iω(η) + Z(η).

If ω(η) is a slow-changing function, then we expect that v(η) is everywhere approx-
imately equal to 1√

ω
exp

[

i
∫ η

ω(η)dη
]

and the function Z(η) under the exponential

is a small correction; in particular, Z(η0) = 0 at the time η0. It is straightforward to
derive the equation for Z(η) from Eq. (55),

Z ′ + 2iωZ = −iω′ − Z2.

This equation can be solved using perturbation theory by treating Z2 as a small
perturbation. To obtain the first approximation, we disregard Z2 and straightfor-
wardly solve the resulting linear equation, which yields

Z(1)(η) = −i
∫ η

η0

dη1ω
′(η1) exp

[

−2i

∫ η

η1

ω(η2)dη2

]

.

Note that Z(1)(η) is an integral of a slow-changing function ω′(η) multiplied by
a quickly oscillating function and is therefore small, |Z| ≪ ω. The first approxi-
mation Z(1) is sufficiently precise in most cases. The resulting approximate mode
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function is

v(η) ≈ 1
√

ω(η0)
exp

[

i

∫ η

η0

ω(η1)dη1 +

∫ η

η0

Z(1)(η)dη

]

.

The Bogolyubov coefficient β between instantaneous lowest-energy states defined
at times η0 and η1 can be approximately computed using Eq. (70):

u(η1) =
1

√

ω(η1)
; u′(η1) = iω(η1)u(η1);

β∗ =
1

2i
√

ω(η1)
[iω(η1)v(η1) − v′(η1)] = v(η1)

(

iω − v′

v

)

η1

2i
√

ω(η1)
≈ −v(η1)Z(η1)

2i
√

ω(η1)
.

Since v(η1) is of orderω−1/2 and |Z| ≪ ω, the number of particles is small: |β|2 ≪ 1.

6 Amplitude of quantum fluctuations

In the previous chapter the focus was on particle production. The main observ-

able of interest was the average particle number 〈N̂〉. Now we consider another
important quantity—the amplitude of field fluctuations.

6.1 Fluctuations of averaged fields

The value of a field cannot be observed at a mathematical point in space. Realis-
tic devices can only measure the value of the field averaged over some region of
space. Spatial averages are also the relevant quantity in cosmology because struc-
ture formation in the universe is explained by fluctuations occurring over large
regions, e.g. of galaxy size. Therefore, let us consider values of fields averaged
over a spatial domain.

A convenient way to describe spatial averaging over arbitrary domains is by
using window functions. A window function for scale L is any function W (x)
which is of order 1 for |x| . L, rapidly decays for |x| ≫ L, and satisfies the nor-
malization condition

∫

W (x) d3x = 1. (72)

A typical example of a window function is the spherical Gaussian window

WL (x) =
1

(2π)3/2L3
exp

[

−|x|2
2L2

]

,

which selects |x| . L. This window can be used to describe measurements per-
formed by a device that cannot resolve distances smaller than L.

We define the averaged field operator χ̂L(η) by integrating the product of χ̂(x, η)
with a window function that selects the scale L,

χ̂L(η) ≡
∫

d3x χ̂ (x, η)WL(x),

where we used the Gaussian window (although the final result will not depend on
this choice). The amplitude δχL(η) of fluctuations in χ̂L(η) in a quantum state |ψ〉
is found from

δχ2
L(η) ≡ 〈ψ| [χ̂L(η)]

2 |ψ〉 .
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For simplicity, we consider the vacuum state |ψ〉 = |0〉. Then the amplitude of
vacuum fluctuations in χ̂L(η) can be computed as a function ofL. We use the mode
expansion (59) for the field operator χ̂(x, η), assuming that the mode functions
vk(η) are given. After some straightforward algebra we find

〈0|
[
∫

d3xWL(x)χ̂ (x, η)

]2

|0〉 =
1

2

∫

d3k

(2π)3
|vk|2 e−k2L2

.

Since the factor e−k2L2

is of order 1 for |k| . L−1 and almost zero for |k| & L−1,
we can estimate the above integral as follows,

1

2

∫

d3k

(2π)3
|vk|2 e−k2L2 ∼

∫ L−1

0

k2 |vk|2 dk ∼ k3 |vk|2
∣

∣

∣

k=L−1

.

Thus the amplitude of fluctuations δχL is (up to a factor of order 1)

δχ2
L ∼ k3 |vk|2 , where k ∼ L−1. (73)

The result (73) is (for any choice of the window function WL) an order-of-
magnitude estimate of the amplitude of fluctuations on scale L. This quantity,
which we denote by δχL(η), is defined only up to a factor of order 1 and is a func-
tion of time η and of the scale L. Expressed through the wavenumber k ≡ 2πL−1,
the fluctuation amplitude is usually called the spectrum of fluctuations.

6.2 Fluctuations in Minkowski spacetime

Let us now compute the spectrum of fluctuations for a scalar field in the Minkowski
space.

The vacuum mode functions are vk(η) = ω
−1/2
k exp (iωkη), whereωk =

√
k2 +m2.

Thus, the spectrum of fluctuations in vacuum is

δχL(η) = k3/2 |vk(η)| =
k3/2

(k2 +m2)
1/4

. (74)

This time-independent spectrum is sketched in Fig. 3. When measured with a
high-resolution device (small L), the field shows large fluctuations. On the other
hand, if the field is averaged over a large volume (L → ∞), the amplitude of
fluctuations tends to zero.

6.3 de Sitter spacetime

The de Sitter spacetime is used in cosmology to describe periods of accelerated
expansion of the universe. The amplitude of fluctuations is an important quantity
to compute in that context.

The geometry of the de Sitter spacetime may be specified by a flat FRW metric

ds2 = dt2 − a2(t)dx2 (75)

with the scale factor a(t) defined by

a(t) = a0e
Ht. (76)

The Hubble parameter H = ȧ/a > 0 is a fixed constant. For convenience, we
redefine the origin of time t to set a0 = 1, so that a(t) = exp(Ht). The exponen-
tially growing scale factor describes an accelerating expansion (inflation) of the
universe.

30



δχ

k

∼ k

∼ k3/2

Figure 3: A sketch of the spectrum of fluctuations δχL in the Minkowski space;
L ≡ 2πk−1. (The logarithmic scaling is used for both axes.)

Horizons

An important feature of the de Sitter spacetime—the presence of horizons—is re-
vealed by the following consideration of trajectories of lightrays. A null worldline
x(t) satisfies a2(t)ẋ2(t) = 1, which yields the solution

|x(t)| =
1

H

(

e−Ht0 − e−Ht
)

for trajectories starting at the origin, x(t0) = 0. Therefore all lightrays emitted at
the origin at t = t0 asymptotically approach the sphere

|x| = rmax(t0) ≡ H−1 exp(−Ht0) = (aH)
−1
.

This sphere is the horizon for the observer at the origin; the spacetime expands too
quickly for lightrays to reach any points beyond the horizon. Similarly, observers
at the origin will never receive any lightrays emitted at t = t0 at points |x| > rmax.

It is easy to verify that at any time t0 the horizon is always at the same proper
distance a(t0)rmax(t0) = H−1 from the observer. This distance is called the horizon
scale.

6.4 Quantum fields in de Sitter spacetime

To describe a real scalar field φ (x, t) in the de Sitter spacetime, we first transform
the coordinate t to make the metric explicitly conformally flat:

ds2 = dt2 − a2(t)dx2 = a2(η)
(

dη2 − dx2
)

,

where the conformal time η and the scale factor a(η) are

η = − 1

H
e−Ht, a(η) = − 1

Hη
.

The conformal time η changes from −∞ to 0 when the proper time t goes from
−∞ to +∞. (Since the value of η is always negative, we shall sometimes have to
write |η| in the equations. However, it is essential that the variable η grows when
t grows, so we cannot use −η as the time variable. For convenience, we chose the
origin of η so that the infinite future corresponds to η = 0.)
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The field φ(x, η) can now be quantized by the method of Sec. 2.2. We introduce
the auxiliary field χ ≡ aφ and use the mode expansion (59)-(55) with

ω2
k(η) = k2 +m2a2 − a′′

a
= k2 +

(

m2

H2
− 2

)

1

η2
. (77)

From this expression it is clear that the effective frequency may become imaginary,
i.e. ω2

k(η) < 0, if m2 < 2H2. In most cosmological scenarios where the early uni-
verse is approximated by a region of the de Sitter spacetime, the relevant value of
H is much larger than the masses of elementary particles, i.e. m ≪ H . Therefore,
for simplicity we shall consider the massless field.

6.5 Bunch-Davies vacuum state

As we saw before, the vacuum state of a field is determined by the choice of mode
functions. Let us now find the appropriate mode functions for a scalar field in de
Sitter spacetime.

With the definition (77) of the effective frequency, where we set m = 0, Eq. (55)
becomes

v′′k +

(

k2 − 2

η2

)

vk = 0. (78)

The general solution of Eq. (78) can be written as

vk(η) = Ak

(

1 +
i

kη

)

eikη +Bk

(

1 − i

kη

)

e−ikη, (79)

where Ak and Bk are constants. It is straightforward to check that the normal-
ization of the mode function, Im (v∗kv

′
k) = 1, constrains the constants Ak and Bk

by

|Ak|2 − |Bk| =
1

k
.

The constants Ak, Bk determine the mode functions and must be chosen ap-
propriately to obtain a physically motivated vacuum state. For fields in de Sitter
spacetime, there is a preferred vacuum state, which is known as the Bunch-Davies
(BD) vacuum. This state is defined essentially as the Minkowski vacuum in the
early-time limit (η → −∞) of each mode.

Before introducing the BD vacuum, let us consider the prescription of the in-
stantaneous vacuum defined at a time η = η0. If we had ω2

k(η0) > 0 for all k, this
prescription would yield a well-defined vacuum state. However, there always ex-
ists a small enough k such that k |η0| ≪ 1 and thus ω2

k(η0) < 0. We have seen that
the energy in a mode χk cannot be minimized when ω2

k < 0. Therefore the instan-
taneous energy prescription cannot define a vacuum state of the entire quantum
field (for all modes) but only for the modes χk with k |η0| & 1. Note that these are
the modes whose wavelength was shorter than the horizon length, (aH)−1 = |η0|,
at time η0 (i.e. the subhorizon modes).

The motivation for introducing the BD vacuum state is the following. The effec-
tive frequency ωk(η) becomes constant in the early-time limit η → −∞. Physically,
this means that the influence of gravity on each mode χk is negligible at sufficiently
early (k-dependent) times. When gravity is negligible, there is a unique vacuum
prescription—the Minkowski vacuum, which coincides with the instantaneous
minimum-energy vacuum at all times. So it is natural to define the mode func-
tions vk(η) by applying the Minkowski vacuum prescription in the limit η → −∞,
separately for each mode χk. This prescription can be expressed by the asymptotic
relations

vk(η) → 1√
ωk
eiωkη,

v′k(η)

vk(η)
→ iωk, as η → −∞. (80)
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The vacuum state determined by the mode functions vk(η) satisfying Eq. (80) is
called the Bunch-Davies vacuum. It follows that the mode functions of the BD
vacuum are given by Eq. (79) with Ak = 1/

√
k and Bk = 0, namely

vk(η) =
1√
k

(

1 +
i

kη

)

eikη. (81)

The Bunch-Davies vacuum prescription has important applications in cosmol-
ogy where the de Sitter spacetime approximates the inflationary stage of the evo-
lution of the universe. However, this approximation is valid only for a certain time
interval, for instance ηi < η < ηf , while at earlier times, η < ηi, the spacetime is not
de Sitter. Therefore the procedure of imposing the minimum-energy conditions at
earlier times η < ηi cannot be justified, and the BD vacuum state can be used only
for modes χk such that k |ηi| ≫ 1. However, it is these modes that are important
for cosmological predictions.

6.6 Spectrum of fluctuations in the BD vacuum

Let us now compute the fluctuation amplitude δφL(η) in the BD vacuum state and
compare the result with the fluctuations in Minkowski spacetime.

According to the formula (73), the amplitude of fluctuations is determined by
absolute values of the mode functions. Up to now we have been mostly working

with the auxiliary field χ̂(x) = aφ̂(x). The mode expansion for φ̂(x) is simply
a−1(η) times the mode expansion for χ̂. Therefore, the mode functions of the field

φ̂ are a−1(η)vk(η), where vk(η) are the mode functions of the field χ̂. Hence, the

spectrum of fluctuations of φ̂ is

δφL(η) = a−1(η)k3/2 |vk(η)| = H
√

k2η2 + 1. (82)

This spectrum is to be compared with Eq. (74) with m = 0. The spectrum (82) for
early times (|η| ≫ k) is the same as in the Minkowski spacetime, while for late

times or for superhorizon scales (k ≪ |η|−1
) the spectrum (82) becomes almost

independent of k (scale-invariant) and shows much larger fluctuations than the
spectrum (74). The growth of fluctuations is due to the influence of gravity on the

field φ̂.
The growth of quantum fluctuations is used in cosmology to explain the for-

mation of large-scale structures (galaxies and clusters of galaxies) in the early uni-
verse. The theory of cosmological inflation assumes the existence of a de Sitter-like
epoch in the history of the universe. During this epoch, vacuum fluctuations of the
fields were significantly amplified. The resulting large quantum fluctuations acted
as seeds for the inhomogeneities of energy density, which then grew by gravita-
tional collapse and eventually caused the formation of galaxies. This theory is a
practical application of quantum field theory in curved spacetime to astrophysics.

7 Unruh effect

The Unruh effect predicts that particles will be detected in a vacuum by an acceler-
ated observer. In this chapter we consider the simplest case, in which the observer
moves with constant acceleration through Minkowski spacetime and measures the
number of particles in a massless scalar field. Even though the field is in the vac-
uum state, the observer finds a distribution of particles characteristic of a thermal
bath of blackbody radiation.
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7.1 Kinematics of uniformly accelerated motion

First we consider the trajectory of an object moving with constant acceleration in
the Minkowski spacetime. A model of this situation is a spaceship with an infinite
energy supply and a propulsion engine that exerts a constant force (but moves with
the ship). The resulting motion of the spaceship is such that the acceleration of the
ship in its own frame of reference (the proper acceleration) is constant. This is the
natural definition of a uniformly accelerated motion in a relativistic theory. (An
object cannot move with dv/dt = const for all time because its velocity is always
smaller than the speed of light, |v| < 1.)

We now introduce the reference frames that will play a major role in our consid-
erations: the laboratory frame, the proper frame, and the comoving frame. The lab-
oratory frame is the usual inertial reference frame with the coordinates (t, x, y, z).
The proper frame is the accelerated system of reference that moves together with
the observer; we shall also call it the accelerated frame. The comoving frame de-
fined at a time t0 is the inertial frame in which the accelerated observer is instan-
taneously at rest at t = t0. (Thus the term comoving frame actually refers to a
different frame for each t0.)

By definition, the observer’s proper acceleration at time t = t0 is the 3-acceleration
measured in the comoving frame at time t0. We consider a uniformly accelerated
observer whose proper acceleration is time-independent and equal to a given 3-
vector a. The trajectory of such an observer may be described by a worldline
xµ(τ), where τ is the proper time measured by the observer. The proper time
parametrization implies the condition

uµuµ = 1, uµ ≡ dxµ

dτ
. (83)

It is a standard result that the 4-acceleration in the laboratory frame,

aµ ≡ duµ

dτ
=
d2xµ

dτ2
,

is related to the three-dimensional proper acceleration a by

aµaµ = − |a|2 . (84)

Derivation of Eq. (84). Let uµ(τ ) be the observer’s 4-velocity and let tc be the time
variable in the comoving frame defined at τ = τ0; this is the time measured by an
inertial observer moving with the constant velocity uµ(τ0). We shall show that the 4-
acceleration aµ(τ ) in the comoving frame has components

`

0, a1, a2, a3
´

, where ai are
the components of the acceleration 3-vector a ≡ d2

x/dt2c measured in the comoving
frame. It will then follow that Eq. (84) holds in the comoving frame, and hence it holds
also in the laboratory frame since the Lorentz-invariant quantity aµaµ is the same in all
frames.

Since the comoving frame moves with the velocity uµ(τ0), the 4-vector uµ(τ0) has
the components (1, 0, 0, 0) in that frame. The derivative of the identity uµ(τ )uµ(τ ) = 1
with respect to τ yields aµ(τ )uµ(τ ) = 0, therefore a0(τ0) = 0 in the comoving frame.
Since dtc = u0(τ )dτ and u0(τ0) = 1, we have

d2xµ

dt2c
=

1

u0

d

dτ

»

1

u0

dxµ

dτ

–

=
d2xµ

dτ 2
+
dxµ

dτ

d

dτ

1

u0
.

It remains to compute

d

dτ

1

u0(τ0)
= −

ˆ

u0(τ0)
˜−2 du0

dτ

˛

˛

˛

˛

τ=τ0

= −a0 (τ0) = 0,
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and it follows that d2xµ/dτ 2 = d2xµ/dt2c =
`

0, a1, a2, a3
´

as required. (Self-test ques-
tion: why is aµ = duµ/dτ 6= 0 even though uµ = (1, 0, 0, 0) in the comoving frame?)

We now derive the trajectory xµ(τ) of the accelerated observer. Without loss
of generality, we may assume that the acceleration is parallel to the x axis, a ≡
(a, 0, 0), where a > 0, and that the observer moves only in the x direction. Then
the coordinates y and z of the observer remain constant and only the functions
x(τ), t(τ) need to be computed. From Eqs. (83)-(84) it is straightforward to derive
the general solution

x(τ) = x0 −
1

a
+

1

a
coshaτ, t(τ) = t0 +

1

a
sinh aτ. (85)

This trajectory has zero velocity at τ = 0 (which implies x = x0, t = t0).

Derivation of Eq. (85). Since aµ = duµ/dτ and u2 = u3 = 0, the components u0, u1 of
the velocity satisfy

„

du0

dτ

«2

−
„

du1

dτ

«2

= −a2,

`

u0
´2 −

`

u1
´2

= 1.

We may assume that u0 > 0 (the time τ grows together with t) and that du1/dτ > 0,
since the acceleration is in the positive x direction. Then

u0 =

q

1 + (u1)2;
du1

dτ
= a

q

1 + (u1)2.

The solution with the initial condition u1(0) = 0 is

u1(τ ) ≡ dx

dτ
= sinh aτ, u0(τ ) ≡ dt

dτ
= cosh aτ.

After an integration we obtain Eq. (85).

The trajectory (85) has a simpler form if we choose the initial conditions x(0) =
a−1 and t(0) = 0. Then the worldline is a branch of the hyperbola x2−t2 = a−2 (see
Fig. 4). At large |t| the worldline approaches the lightcone. The observer comes in
from x = +∞, decelerates and stops at x = a−1, and then accelerates back towards
infinity. In the comoving frame of the observer, this motion takes infinite proper
time, from τ = −∞ to τ = +∞.

From now on, we drop the coordinates y and z and work in the 1+1-dimensional
spacetime (t, x).

7.2 Coordinates in the proper frame

To describe quantum fields as seen by an accelerated observer, we need to use the
proper coordinates (τ, ξ), where τ is the proper time and ξ is the distance measured
by the observer. The proper coordinate system (τ, ξ) is related to the laboratory
frame (t, x) by some transformation functions τ(t, x) and ξ(t, x) which we shall
now determine.

The observer’s trajectory t(τ), x(τ) should correspond to the line ξ = 0 in the
proper coordinates. Let the observer hold a rigid measuring stick of proper length
ξ0, so that the entire stick accelerates together with the observer. Then the stick is
instantaneously at rest in the comoving frame and the far endpoint of the stick has
the proper coordinates (τ, ξ0) at time τ . We shall derive the relation between the
coordinates (t, x) and (τ, ξ) by computing the laboratory coordinates (t, x) of the
far end of the stick as functions of τ and ξ0.
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Figure 4: The worldline of a uniformly accelerated observer (proper acceleration
a ≡ |a|) in the Minkowski spacetime. The dashed lines show the lightcone. The
observer cannot receive any signals from the events P , Q and cannot send signals
to R.
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In the comoving frame at time τ , the stick is represented by the 4-vector sµ
(com) ≡

(0, ξ0) connecting the endpoints (τ, 0) and (τ, ξ0). This comoving frame is an iner-
tial system of reference moving with the 4-velocity uµ(τ) = dxµ/dτ . Therefore the
coordinates sµ

(lab) of the stick in the laboratory frame can be found by applying the

inverse Lorentz transformation to the coordinates sµ
(com):

[

s0(lab)

s1(lab)

]

=
1√

1 − v2

(

1 v
v 1

)

[

s0(com)

s1(com)

]

=

(

u0 u1

u1 u0

)

[

s0(com)

s1(com)

]

=

[

u1ξ
u0ξ

]

,

where v ≡ u1/u0 is the velocity of the stick in the laboratory system. The stick is
attached to the observer moving along xµ(τ), so the proper coordinates (τ, ξ) of
the far end of the stick correspond to the laboratory coordinates

t(τ, ξ) = x0(τ) + s0(lab) = x0(τ) +
dx1(τ)

dτ
ξ, (86)

x(τ, ξ) = x1(τ) + s1(lab) = x1(τ) +
dx0(τ)

dτ
ξ. (87)

Note that the relations (86)-(87) specify the proper frame for any trajectory x0,1(τ)
in the 1+1-dimensional Minkowski spacetime.

Now we can substitute Eq. (85) into the above relations to compute the proper
coordinates for a uniformly accelerated observer. We choose the initial conditions
x0(0) = 0, x1(0) = a−1 for the observer’s trajectory and obtain

t(τ, ξ) =
1 + aξ

a
sinh aτ, x(τ, ξ) =

1 + aξ

a
coshaτ. (88)

The converse relations are

τ(t, x) =
1

2a
ln
x+ t

x− t
, ξ(t, x) = −a−1 +

√

x2 − t2.

The horizon

It can be seen from Eq. (88) that the coordinates (τ, ξ) vary in the intervals −∞ <
τ < +∞ and −a−1 < ξ < +∞. In particular, for ξ < −a−1 we would find
∂t/∂τ < 0, i.e. the direction of time t would be opposite to that of τ . One can
verify that an accelerated observer cannot measure distances longer than a−1 in
the direction opposite to the acceleration, for instance, the distances to the events
P and Q in Fig. 4. A measurement of the distance to a point requires to place a
clock at that point and to synchronize that clock with the observer’s clock. How-
ever, the observer cannot synchronize clocks with the events P and Q because no
signals can be ever received from these events. One says that the accelerated ob-
server perceives a horizon at proper distance a−1.

The existence of the horizon can be easily seen by the following qualitative
considerations. The accelerated observer measures a constant gravitational field
with acceleration a pointing in the negative x direction. Consider a photon of
energy E propagating “upwards” in the gravitational field. After ascending to a
height ∆h, the photon loses energy, ∆E = −Ea∆h. After ascending to the height
∆h = a−1, the photon would lose all its kinetic energy and will not be able to
continue moving upwards. (This calculation is of course not rigorous but does
give the correct answer.)

The coordinate system (88) is incomplete and covers only a “quarter” of the
Minkowski spacetime, consisting of the subdomain x > |t| (see Fig. 5). This is
the subdomain of the Minkowski spacetime accessible to a uniformly accelerated
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observer. For instance, the events P , Q, R cannot be described by (real) values of τ
and ξ. The past lightcone x = −t corresponds to the proper coordinates τ = −∞
and ξ = −a−1. The observer can see signals from the event R, however these sig-
nals appear to have originated not from R but from the horizon ξ = −a−1 in the
infinite past τ = −∞.

Another way to see that the line ξ = −a−1 is a horizon is to consider a line of
constant proper length ξ = ξ0 > −a−1. It follows from Eq. (88) that the line ξ = ξ0
is a trajectory of the form x2 − t2 = const with the proper acceleration

a0 ≡ 1√
x2 − t2

=
(

ξ0 + a−1
)−1

.

Therefore, the worldline ξ = −a−1 would have to represent an infinite proper
acceleration, which would require an infinitely large force and is thus impossible.
It follows that an accelerated observer cannot hold a rigid measuring stick longer
than a−1 in the direction opposite to acceleration. (A rigid stick is one that would
keep its proper distance constant in the observer’s reference frame.)

7.3 Rindler spacetime

It is straightforward to show that the Minkowski metric in the proper coordinates
(τ, ξ) is

ds2 = dt2 − dx2 = (1 + aξ)2dτ2 − dξ2. (89)

The spacetime with this metric is called the Rindler spacetime. The curvature of the
Rindler spacetime is everywhere zero since it differs from the Minkowski space-
time merely by a change of coordinates.

To develop the quantum field theory in the Rindler spacetime, we first rewrite
the metric (89) in a conformally flat form. This can be achieved by choosing the

new spatial coordinate ξ̃ such that dξ = (1 + aξ)dξ̃, because in that case both dτ2

and dξ̃2 will have a common factor (1 + aξ)2. (Note that the new coordinate ξ̃ is
a “conformal distance” fully analogous to the “conformal time” variable η used in
Sec. 5.4.) The necessary replacement is therefore

ξ̃ ≡ 1

a
ln(1 + aξ).

Since the proper distance ξ is constrained by ξ > −a−1, the conformal distance ξ̃

varies in the interval −∞ < ξ̃ < +∞. The metric becomes

ds2 = e2aξ̃(dτ2 − dξ̃2). (90)

The relation between the laboratory coordinates and the conformal coordinates is

t(τ, ξ̃) = a−1eaξ̃ sinh aτ, x(τ, ξ̃) = a−1eaξ̃ coshaτ. (91)

7.4 Quantum field in Rindler spacetime

The goal of this section is to quantize a scalar field in the proper reference frame of
a uniformly accelerated observer. To simplify the problem, we consider a massless
scalar field in the 1+1-dimensional spacetime.

The action for a massless scalar field φ(t, x) is

S[φ] =
1

2

∫

gαβφ,αφ,β

√−gd2x.
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Figure 5: The proper coordinate system of a uniformly accelerated observer in
the Minkowski spacetime. The solid hyperbolae are the lines of constant proper
distance ξ; the hyperbola with arrows is the worldline of the observer, ξ = 0 or
x2 − t2 = a−2. The lines of constant τ are dotted. The dashed lines show the
lightcone which corresponds to ξ = −a−1. The events P , Q, R are not covered by
the proper coordinate system.

39



Here xµ ≡ (t, x) is the two-dimensional coordinate. It is easy to see that this action
is conformally invariant: indeed, if we replace

gαβ → g̃αβ = Ω2(t, x)gαβ ,

then the determinant
√−g and the contravariant metric are replaced by

√−g → Ω2√−g, gαβ → Ω−2gαβ , (92)

so the factors Ω2 cancel in the action. The conformal invariance causes a significant
simplification of the theory in 1+1 dimensions (a calculation for massive field in
3+1 dimensions would be more complicated).

In the laboratory coordinates (t, x), the action is

S[φ] =
1

2

∫

[

(∂tφ)
2 − (∂xφ)

2
]

dt dx.

In the conformal coordinates, the metric (90) is equal to the flat Minkowski met-

ric multiplied by a conformal factor Ω2(τ, ξ̃) ≡ exp(2aξ̃). Therefore, due to the

conformal invariance, the action has the same form in the coordinates (τ, ξ̃):

S[φ] =
1

2

∫

[

(∂τφ)2 − (∂ξ̃φ)2
]

dτ dξ̃.

The classical equations of motion in the laboratory frame and in the accelerated
frame are

∂2φ

∂t2
− ∂2φ

∂x2
= 0;

∂2φ

∂τ2
− ∂2φ

∂ξ̃2
= 0,

with the general solutions

φ(t, x) = A(t− x) +B(t+ x), φ(τ, ξ̃) = P (τ − ξ̃) +Q(τ + ξ̃).

Here A, B, P , and Q are arbitrary smooth functions. Note that a solution φ(t, x)

representing a certain state of the field will be a very different function of τ and ξ̃.
We shall now quantize the field φ and compare the vacuum states in the labo-

ratory frame and in the accelerated frame.
The procedure of quantization is formally the same in both coordinate systems

(t, x) and (τ, ξ̃). The mode expansion in the laboratory frame is found from Eq. (19)
with the substitution ωk = |k|:

φ̂(t, x) =

∫ +∞

−∞

dk

(2π)1/2

1
√

2 |k|

[

e−i|k|t+ikxâ−k + ei|k|t−ikxâ+
k

]

. (93)

The normalization factor (2π)1/2 is used in 1+1 dimensions instead of the factor
(2π)3/2 used in 3+1 dimensions. The creation and annihilation operators â±k de-
fined by Eq. (93) satisfy the usual commutation relations and describe particles
moving with momentum k either in the positive x direction (k > 0) or in the nega-
tive x direction (k < 0).

The vacuum state in the laboratory frame (the Minkowski vacuum), denoted
by |0M 〉, is the zero eigenvector of all the annihilation operators â−k ,

â−k |0M 〉 = 0 for all k.

The mode expansion in the accelerated frame is quite similar to Eq. (93),

φ̂(τ, ξ̃) =

∫ +∞

−∞

dk

(2π)1/2

1
√

2 |k|

[

e−i|k|τ+ikξ̃ b̂−k + ei|k|τ−ikξ̃ b̂+k

]

. (94)
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Note that the mode expansions (93) and (94) are decompositions of the opera-

tor φ̂(x, t) into linear combinations of two different sets of basis functions with

operator-valued coefficients â±k and b̂±k . So it is to be expected that the operators

â±k and b̂±k are different, although they satisfy similar commutation relations.
The vacuum state in the accelerated frame |0R〉 (the Rindler vacuum) is defined

by

b̂−k |0R〉 = 0 for all k.

Since the operators b̂k differ from âk, the Rindler vacuum |0R〉 and the Minkowski

vacuum |0M 〉 are two different quantum states of the field φ̂.
At this point, a natural question to ask is whether the state |0M 〉 or |0R〉 is the

“correct” vacuum. To answer this question, we need to consider the physical inter-
pretation of the states |0M 〉 and |0R〉 in a particular (perhaps imaginary) physical
experiment. Let us imagine a hypothetical device for preparing the quantum field
in the lowest-energy state; this device may work by pumping all energy, as much
as possible, out of a certain volume. If mounted onto an accelerated spaceship, the
device will prepare the field in the quantum state |0R〉. Observers moving with the
ship would agree that the field in the state |0R〉 has the lowest possible energy and
the Minkowski state |0M 〉 has a higher energy. Thus a particle detector at rest in
the accelerated frame will register particles when the scalar field is in the state |0M 〉.

Neither of the two vacuum states is “more correct” if considered by itself,
without regard for realistic physical conditions in the universe. Ultimately the
choice of vacuum is determined by experiment: the correct vacuum state must be
such that the theoretical predictions agree with the available experimental data.
For instance, the spacetime near the Solar system is approximately flat (almost
Minkowski), and we observe empty space that does not create any particles by it-
self. By virtue of this observation, we are justified to ascribe the vacuum state |0M 〉
to fields in the empty Minkowski spacetime. In particular, an accelerated observer
moving through empty space will encounter fields in the state |0M 〉 and therefore
will detect particles. This detection is a manifestation of the Unruh effect.

The rest of this chapter is devoted to a calculation relating the Minkowski

frame operators â±k to the Rindler frame operators b̂±k through the appropriate Bo-
golyubov coefficients. This calculation will enable us to express the Minkowski
vacuum as a superposition of excited states built on top of the Rindler vacuum
and thus to compute the probability distribution for particle occupation numbers
observed in the accelerated frame.

7.5 Lightcone mode expansions

It is convenient to introduce the lightcone coordinates7

ū ≡ t− x, v̄ ≡ t+ x; u ≡ τ − ξ̃, v ≡ τ + ξ̃.

The relation between the laboratory frame and the accelerated frame has a simpler
form in lightcone coordinates: from Eq. (91) we find

ū = −a−1e−au, v̄ = a−1eav, (95)

so the metric is
ds2 = dū dv̄ = ea(v−u)du dv.

7The chosen notation (u, v) for the lightcone coordinates in a uniformly accelerated frame and (ū, v̄)
for the freely falling (unaccelerated) frame will be used in chapter 8 as well.
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The field equations and their general solutions are also expressed more concisely
in the lightcone coordinates:

∂2

∂ū∂v̄
φ (ū, v̄) = 0, φ (ū, v̄) = A (ū) +B (v̄) ;

∂2

∂u∂v
φ(u, v) = 0, φ(u, v) = P (u) +Q(v). (96)

The mode expansion (93) can be rewritten in the coordinates ū, v̄ by first split-
ting the integration into the ranges of positive and negative k,

φ̂(t, x) =

∫ 0

−∞

dk

(2π)1/2

1
√

2 |k|
[

eikt+ikxâ−k + e−ikt−ikxâ+
k

]

+

∫ +∞

0

dk

(2π)1/2

1√
2k

[

e−ikt+ikxâ−k + eikt−ikxâ+
k

]

.

Then we introduce ω = |k| as the integration variable with the range 0 < ω < +∞
and obtain the lightcone mode expansion

φ̂ (ū, v̄) =

∫ +∞

0

dω

(2π)1/2

1√
2ω

[

e−iωūâ−ω + eiωūâ+
ω + e−iωv̄â−−ω + eiωv̄ â+

−ω

]

. (97)

Lightcone mode expansions explicitly decompose the field φ̂ (ū, v̄) into a sum
of functions of ū and functions of v̄. This agrees with Eq. (96) from which we find
that A(ū) is a linear combination of the operators â±ω with positive momenta ω,
while B(v̄) is a linear combination of â±−ω with negative momenta −ω:

φ̂ (ū, v̄) = Â (ū) + B̂ (v̄) ;

Â (ū) =

∫ +∞

0

dω

(2π)1/2

1√
2ω

[

e−iωūâ−ω + eiωūâ+
ω

]

,

B̂ (v̄) =

∫ +∞

0

dω

(2π)1/2

1√
2ω

[

e−iωv̄â−−ω + eiωv̄ â+
−ω

]

.

The lightcone mode expansion in the Rindler frame has exactly the same form
except for involving the coordinates (u, v) instead of (ū, v̄). We use the integration
variable Ω to distinguish the Rindler frame expansion from that of the Minkowski
frame,

φ̂(u, v) = P̂ (u) + Q̂(v)

=

∫ +∞

0

dΩ

(2π)1/2

1√
2Ω

[

e−iΩub̂−Ω + eiΩub̂+Ω + e−iΩv b̂−−Ω + eiΩv b̂+−Ω

]

. (98)

As before, P̂ (u) is expanded into operators b̂±Ω with positive momenta Ω and Q̂(v)

into the operators b̂±−Ω with negative momenta −Ω. (Note that the variables ω and
Ω take only positive values. Also, the Rindler mode expansion is only valid within
the domain x > |t| covered by the Rindler frame; it is only within this domain that
we can compare the two mode expansions.)

7.6 Bogolyubov transformations

The relation between the operators â±±ω and b̂±±Ω, which we shall presently derive,
is a Bogolyubov transformation of a more general form than that considered in
Sec. 5.6.
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Since the coordinate transformation (95) does not mix u and v, the identity

φ̂(u, v) = Â (ū(u)) + B̂ (v̄(v)) = P̂ (u) + Q̂(v)

entails two separate relations for u and for v,

Â (ū(u)) = P̂ (u), B̂ (v̄(v)) = Q̂(v).

Comparing the expansions (97) and (98), we find that the operators â±ω with pos-

itive momenta ω are expressed through b̂±Ω with positive momenta Ω, while the

operators â±−ω are expressed through negative-momentum operators b̂±−Ω. In other
words, there is no mixing between operators of positive and negative momentum.

The relation Â (ū) = P̂ (u) is then rewritten as

Â (ū) =

∫ +∞

0

dω

(2π)1/2

1√
2ω

[

e−iωūâ−ω + eiωūâ+
ω

]

= P̂ (u) =

∫ +∞

0

dΩ

(2π)1/2

1√
2Ω

[

e−iΩub̂−Ω + eiΩub̂+Ω

]

. (99)

Here ū is understood to be the function of u given by Eq. (95); both sides of Eq. (99)
are equal as functions of u.

We can now express the positive-momentum operators â±ω as explicit linear

combinations of b̂±Ω . To this end, we perform the Fourier transform of both sides of
Eq. (99) in u. The RHS yields

∫ +∞

−∞

du√
2π
eiΩuP̂ (u) =

1
√

2 |Ω|

{

b̂−Ω , Ω > 0;

b̂+|Ω|, Ω < 0.
(100)

(The Fourier transform variable is denoted also by Ω for convenience.) The Fourier
transform of the LHS of Eq. (99) yields an expression involving all â±ω ,

∫ +∞

−∞

du√
2π
eiΩuÂ (ū) =

∫ ∞

0

dω√
2ω

∫ +∞

−∞

du

2π

[

eiΩu−iωūâ−ω + eiΩu+iωūâ+
ω

]

≡
∫ ∞

0

dω√
2ω

[

F (ω,Ω)â−ω + F (−ω,Ω)â+
ω

]

, (101)

where we introduced the auxiliary function8

F (ω,Ω) ≡
∫ +∞

−∞

du

2π
eiΩu−iωū =

∫ +∞

−∞

du

2π
exp

[

iΩu+ i
ω

a
e−au

]

. (102)

Comparing Eqs. (100) and (101) restricted to positive Ω, we find that the relation

between â±ω and b̂−Ω is of the form

b̂−Ω =

∫ ∞

0

dω
[

αωΩâ
−
ω + βωΩâ

+
ω

]

, (103)

where the coefficients αωΩ and βωΩ are

αωΩ =

√

Ω

ω
F (ω,Ω), βωΩ =

√

Ω

ω
F (−ω,Ω); ω > 0,Ω > 0. (104)

8Because of the carelessly interchanged order of integration while deriving Eq. (101), the integral
(102) diverges at u → +∞, so the definition of F (ω, Ω) must be given more carefully if we desire full
mathematical rigor.
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The operators b̂+Ω can be similarly expressed through â±ω using the Hermitian con-
jugation of Eq. (103) and the identity

F ∗(ω,Ω) = F (−ω,−Ω).

The relation (103) is a Bogolyubov transformation that mixes creation and an-
nihilation operators with different momenta ω 6= Ω. In contrast, the Bogolyubov
transformations considered in Sec. 5.6 are “diagonal,” with αωΩ and βωΩ propor-
tional to δ(ω − Ω).

The relation between the operators â±−ω and b̂±−Ω is obtained from the equation

B̂ (v̄) = Q̂(v). We omit the corresponding straightforward calculations and con-
centrate on the modes with positive momentum; the results for negative momenta
are completely analogous.

General Bogolyubov transformations

We now briefly consider the properties of a general Bogolyubov transformation,

b̂−Ω =

∫ +∞

−∞
dω
[

αωΩâ
−
ω + βωΩâ

+
ω

]

. (105)

The relation (103) is of this form except for the integration over 0 < ω < +∞ which
is justified because the only nonzero Bogolyubov coefficients are those relating the
momenta ω,Ω of equal sign, i.e. α−ω,Ω = 0 and β−ω,Ω = 0. But for now we shall
not limit ourselves to this case.

The relation for the operator b̂+Ω is the Hermitian conjugate of Eq. (105).

Remark: To avoid confusion in the notation, we always write the indices ω,Ω in the Bo-
golyubov coefficients in this order, i.e. αωΩ, but never αΩω . In the calculations through-
out this chapter, the integration is always over the first index ω corresponding to the
momentum of a-particles.

Since the operators â±ω , b̂±Ω satisfy the commutation relations

[

â−ω , â
+
ω′

]

= δ(ω − ω′), [b̂−Ω , b̂
+
Ω′ ] = δ(Ω − Ω′), (106)

it is straightforward to check (by substituting Eq. (105) into the above relation for

b̂±Ω ) that the Bogolyubov coefficients are constrained by

∫ +∞

−∞
dω (αωΩα

∗
ωΩ′ − βωΩβ

∗
ωΩ′) = δ(Ω − Ω′). (107)

This is analogous to the normalization condition |αk|2 − |βk|2 = 1 we had earlier.
Note that the origin of the δ function in Eq. (106) is the infinite volume of the

entire space. If the field were quantized in a finite box of volume V , the momenta
ω and Ω would be discrete and the δ function would be replaced by the ordinary
Kronecker symbol times the volume factor, i.e. δΩΩ′V . The δ function in Eq. (107)
has the same origin. Below we shall use Eq. (107) with Ω = Ω′ and the divergent
factor δ(0) will be interpreted as the infinite spatial volume.

7.7 Density of particles

Since the vacua |0M 〉 and |0R〉 corresponding to the operators â−ω and b̂−Ω are differ-
ent, the a-vacuum is a state with b-particles and vice versa. We now compute the
density of b-particles in the a-vacuum state.
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The b-particle number operator is N̂Ω ≡ b̂+Ω b̂
−
Ω , so the average b-particle number

in the a-vacuum |0M 〉 is equal to the expectation value of N̂Ω,

〈N̂Ω〉 ≡ 〈0M | b̂+Ω b̂−Ω |0M 〉

= 〈0M |
∫

dω
[

α∗
ωΩâ

+
ω + β∗

ωΩâ
−
ω

]

∫

dω′ [αω′Ωâ
−
ω′ + βω′Ωâ

+
ω′

]

|0M 〉

=

∫

dω |βωΩ|2 . (108)

This is the mean number of particles observed in the accelerated frame.
In principle one can explicitly compute the Bogolyubov coefficients βωΩ de-

fined by Eq. (104) in terms of the Γ function (see below). However, we only need
to evaluate the RHS of Eq. (108) which involves an integral over ω, and we shall
use a mathematical trick that allows us to compute just that integral and avoid
other, more cumbersome calculations.

We first show that the function F (ω,Ω) satisfies the identity

F (ω,Ω) = F (−ω,Ω) exp

(

πΩ

a

)

, for ω > 0, a > 0. (109)

Derivation of Eq. (109)
The function F (ω,Ω) can be reduced to Euler’s Γ function by changing the variable

u→ t,

t ≡ − iω
a
e−au.

The result is

F (ω,Ω) =
1

2πa
exp

„

i
Ω

a
ln
ω

a
+
πΩ

2a

«

Γ

„

− iΩ
a

«

, ω > 0, a > 0.

However, it is not clear whether to take ln(−ω) = lnω+ iπ or some other phase instead
of iπ in the above expression. To resolve this question, we need to analyze the required
analytic continuation of the Γ function more carefully.

A direct approach (without using the Γ function) is to deform the contour of inte-
gration in Eq. (102). The contour can be shifted downwards by −iπa−1 into the line
u = −iπa−1 + t, where t is real, −∞ < t < +∞ (see Fig. 6). Then e−au = −e−at and
we obtain

F (ω,Ω) =

Z +∞

−∞

dt

2π
exp

„

iΩt +
πΩ

a
− iω

a
e−at

«

= F (−ω,Ω) exp

„

πΩ

a

«

.

It remains to justify the shift of the contour. The integrand has no singularities and,
since the lateral lines have a limited length, it is enough to show that the integrand
vanishes at u → ±∞ − iα for 0 < α < πa−1. At u = M − iα and M → −∞ the
integrand vanishes since

lim
u→−∞−iα

Re

„

iω

a
e−au

«

= − lim
t→−∞

ω

a
e−at sinαa = −∞. (110)

At u → +∞ − iα the integral does not actually converge and must be regularized,
e.g. by inserting a convergence factor exp

`

−bu2
´

with b > 0:

F (ω,Ω) = lim
b→+0

Z +∞

−∞

du

2π
exp

“

−bu2 + iΩu+ i
ω

a
e−au

”

. (111)

With this (or another) regularization, the integrand vanishes at u → +∞− iα as well.
Therefore the contour may be shifted and our result is justified in the regularized sense.

Note that we cannot shift the contour to u = −i(π + 2πn)a−1 + t with any n 6= 0
because Eq. (110) will not hold. Also, with ω < 0 we will be unable to move the contour
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Figure 6: The original and the shifted contours of integration for Eq. (111) are
shown by solid and dashed lines. The shaded regions cannot be crossed when
deforming the contour at infinity.

in the negative imaginary direction. The shift of the contour we used is the only one
possible.

We then substitute Eq. (104) into the normalization condition (107), use Eq. (109)
and find

δ(Ω − Ω′) =

∫ +∞

0

dω

√
ΩΩ′

ω
[F (ω,Ω)F ∗(ω,Ω′) − F (−ω,Ω)F ∗(−ω,Ω′)]

=

[

exp

(

πΩ + πΩ′

a

)

− 1

]
∫ +∞

0

dω

√
ΩΩ′

ω
F ∗(−ω,Ω)F (−ω,Ω).

The last line above yields the relation

∫ +∞

0

dω

√
ΩΩ′

ω
F (−ω,Ω)F ∗(−ω,Ω′) =

[

exp

(

2πΩ

a

)

− 1

]−1

δ(Ω − Ω′). (112)

Setting Ω′ = Ω in Eq. (112), we directly compute the integral in the RHS of Eq. (108),

〈N̂Ω〉 =

∫ +∞

0

dω |βωΩ|2 =

∫ +∞

0

dω
Ω

ω
|F (−ω,Ω)|2 =

[

exp

(

2πΩ

a

)

− 1

]−1

δ(0).

As usual, we expect 〈N̂Ω〉 to be divergent since it is the total number of particles in
the entire space. As discussed above, the divergent volume factor δ(0) represents
the volume of space, and the remaining factor is the density nΩ of b-particles with
momentum Ω:

∫ +∞

0

dω |βωΩ|2 ≡ nΩδ(0).

Therefore, the mean density of particles in the mode with momentum Ω is

nΩ =

[

exp

(

2πΩ

a

)

− 1

]−1

. (113)

This is the main result of this chapter.
So far we have computed nΩ only for positive-momentum modes (with Ω > 0).

The result for negative-momentum modes is obtained by replacing Ω by |Ω| in
Eq. (113).
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7.8 Unruh temperature

A massless particle with momentum Ω has energy E = |Ω|, so the formula (113) is
equivalent to the Bose-Einstein distribution

n(E) =

[

exp

(

E

T

)

− 1

]−1

where T is the Unruh temperature

T ≡ a

2π
.

We found that an accelerated observer detects particles when the field φ̂ is in the
Minkowski vacuum state |0M 〉. The detected particles may have any momentum
Ω, although the probability for registering a high-energy particle is very small. The
particle distribution (113) is characteristic of the thermal blackbody radiation with
the temperature T = a/2π, where a is the magnitude of the proper acceleration
(in Planck units). An accelerated detector behaves as though it were placed in a
thermal bath with temperature T . This is the Unruh effect.

A physical interpretation of the Unruh effect as seen in the laboratory frame is
the following. The accelerated detector is coupled to the quantum fields and per-
turbs their quantum state around its trajectory. This perturbation is very small but
as a result the detector registers particles, although the fields were previously in
the vacuum state. The detected particles are real and the energy for these particles
comes from the agent that accelerates the detector.

Finally, we note that the Unruh effect is impossible to use in practice because
the acceleration required to produce a measurable temperature is enormous. Here
is an example calculation. Let us determine the acceleration corresponding to the
Unruh temperature T = 100◦C; in that case, water will boil in an accelerated con-
tainer due to the Unruh effect. We need to express all quantities in the SI units.
The equation T = a/(2π) becomes

kT =
~

c

a

2π
.

Here k ≈ 1.38 · 10−23J/K is Boltzmann’s constant. The boiling point of water is
T = 373K. The required acceleration is a ∼ 1022m/s2 which is clearly beyond any
practical possibility. The Unruh effect is an extremely inefficient way to produce
particles.

8 Hawking radiation

Classical general relativity describes black holes as massive objects with such a
strong gravitational field that even light cannot escape their surface (the black hole
horizon). However, quantum theory predicts that black holes emit particles mov-
ing away from the horizon. The particles are produced out of vacuum fluctuations
of quantum fields present around the black hole. In effect, a black hole (BH) is
not completely black but radiates a dim light as if it were an object with a low but
nonzero temperature.

The main focus of this chapter is to compute the density of particles emitted by
a static black hole, as registered by observers far away from the BH horizon.
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8.1 Scalar field in Schwarzschild spacetime

We consider a scalar field in the presence of a single nonrotating black hole of mass
M . The BH spacetime is described by the Schwarzschild metric,9

ds2 =

(

1 − 2M

r

)

dt2 −
(

1 − 2M

r

)−1

dr2 − r2
(

dθ2 + dϕ2 sin2 θ
)

.

This metric is singular at r = 2M which corresponds to the BH horizon, while for
r < 2M the coordinate t is spacelike and r is timelike. Therefore the coordinates
(t, r) may be used with the normal interpretation of time and space only in the
exterior region, r > 2M .

To simplify the calculations, we assume that the field φ is independent of the
angular variables θ, ϕ and restrict our attention to a 1+1-dimensional section of the
spacetime with the coordinates (t, r). The line element in 1+1 dimensions,

ds2 = gabdx
adxb, x0 ≡ t, x1 ≡ r,

involves the reduced metric

gab =

[

1 − 2M
r 0

0 −
(

1 − 2M
r

)−1

]

.

The theory we are developing is a toy model (i.e. a drastically simplified version)
of the full 3+1-dimensional theory in the Schwarzschild spacetime. We expect that
the main features of the full theory are preserved in the 1+1-dimensional model.

The action for a massless scalar field is

S [φ] =
1

2

∫

gabφ,aφ,b

√−gd2x.

As shown before, this action is in fact conformally invariant. Because of the con-
formal invariance, a significant simplification occurs if the metric is brought to a
conformally flat form. This is achieved by a change of coordinates similar to that
employed in previous section. Namely, we introduce a “conformal distance” r∗

instead of r, where r∗ = f(r) and the function f(r) is chosen such that

ds2 =

(

1 − 2M

r

)

dt2 −
(

1 − 2M

r

)−1

dr2 = A(r)
[

dt2 − dr∗2
]

,

where A(r) is some function. It follows that we must choose

df(r)

dr
=

(

1 − 2M

r

)−1

; dr =

(

1 − 2M

r

)

dr∗.

From this relation we find r∗(r) up to an integration constant which we choose as
2M for convenience,

r∗(r) = r − 2M + 2M ln
( r

2M
− 1
)

. (114)

The metric in the coordinates (t, r∗) is conformally flat,

ds2 =

(

1 − 2M

r

)

[

dt2 − dr∗2
]

, (115)

9In our notation here and below, the asimuthal angle is ϕ while the scalar field is φ.
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where r must be expressed through r∗ using Eq. (114). However, we shall not need
an explicit formula for the function r(r∗).

The coordinate r∗(r) is defined only for r > 2M and varies in the range −∞ <
r∗ < +∞. It is called the “tortoise coordinate” because an object approaching the
horizon r = 2M needs to cross an infinite coordinate distance in r∗. From Eq. (115)
it is clear that the tortoise coordinates (t, r∗) are asymptotically the same as the
Minkowski coordinates (t, r) when r → +∞, i.e. in regions far from the black hole
where the spacetime is almost flat.

The action for the scalar field in the tortoise coordinates is

S [φ] =
1

2

∫

[

(∂tφ)
2 − (∂r∗φ)

2
]

dt dr∗,

and the general solution of the equation of motion is of the form

φ (t, r∗) = P (t− r∗) +Q (t+ r∗) ,

where P and Q are arbitrary (but sufficiently smooth) functions.
In the lightcone coordinates (u, v) defined by

u ≡ t− r∗, v ≡ t+ r∗, (116)

the metric is expressed as

ds2 =

(

1 − 2M

r

)

du dv. (117)

Note that r = 2M is a singularity where the metric becomes degenerate.

8.2 Kruskal coordinates

The coordinate system (t, r∗) has the advantage that for r∗ → +∞ it asymptotically
coincides with the Minkowski coordinate system (t, r) naturally defined far away
from the BH horizon. However, the coordinates (t, r∗) do not cover the black hole
interior, r < 2M . To describe the entire spacetime, we need another coordinate
system.

It is a standard result that the singularity in the Schwarzschild metric (117)
which occurs at r = 2M is merely a coordinate singularity since a suitable change
of coordinates yields a metric regular at the BH horizon. For instance, an observer
freely falling into the black hole would see a normal, finitely curved space while
crossing the horizon line r = 2M . Therefore one is motivated to consider a co-
ordinate system (t̄, r̄) that describes the proper time t̄ and the proper distance r̄
measured by a freely falling observer. A suitable coordinate system is the Kruskal
frame. We omit the construction of the Kruskal frame10 and write only the final
formulae. The Kruskal lightcone coordinates

ū ≡ t̄− r̄, v̄ ≡ t̄+ r̄

are related to the tortoise lightcone coordinates (116) by

ū = −4M exp
(

− u

4M

)

, v̄ = 4M exp
( v

4M

)

. (118)

The parameters ū, v̄ vary in the intervals

−∞ < ū < 0, 0 < v̄ < +∞. (119)

10A detailed derivation can be found, for instance, in §31 of the book Gravitation by C.W. MISNER,
K. THORNE, and J. WHEELER (W. H. Freeman, San Francisco, 1973).
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The inverse relation between (ū, v̄) and the tortoise coordinates (t, r∗) is then found
from Eqs. (114) and (118):

t = 2M ln
(

− v̄
ū

)

,

exp

(

− r∗

2M

)

= −exp
(

1 − r
2M

)

1 − r
2M

= −16M2

ūv̄
. (120)

The BH horizon r = 2M corresponds to the lines ū = 0 and v̄ = 0. To exam-
ine the spacetime near the horizon, we need to rewrite the metric in the Kruskal
coordinates. With the substitution

u = −4M ln
(

− ū

4M

)

, v = 4M ln
v̄

4M
,

the metric (117) becomes

ds2 = −16M2

ūv̄

(

1 − 2M

r

)

dū dv̄.

Using Eqs. (114) and (120), after some algebra we obtain

ds2 =
2M

r
exp

(

1 − r

2M

)

dū dv̄, (121)

where it is implied that the Schwarzschild coordinate r is expressed through ū and
v̄ using the relation (120).

It follows from Eq. (121) that at r = 2M the metric is ds2 = dū dv̄, the same as in
the Minkowski spacetime. Although the coordinates ū, v̄ were originally defined
in the ranges (119), there is no singularity at ū = 0 or at v̄ = 0, and therefore the
coordinate system (ū, v̄) may be extended to ū > 0 and v̄ < 0. Thus the Kruskal co-
ordinates cover a larger patch of the spacetime than the tortoise coordinates (t, r∗).
For instance, Eq. (120) relates r to ū, v̄ also for 0 < r < 2M , even though r∗ is
undefined for these r. Therefore, the Kruskal frame covers also the interior of the
black hole.

Since the metric (121) is conformally flat, the action and the classical field equa-
tions for a conformally coupled field in the Kruskal frame have the same form
as in the tortoise coordinates. For instance, the general solution for the field φ is
φ (ū, v̄) = A (ū) +B (v̄).

We note that Eq. (118) is similar to the definition (95) of the proper frame for a
uniformly accelerated observer. The formal analogy is exact if we set a ≡ (4M)−1.
Note that a freely falling observer (with the worldline r̄ = const) has zero proper
acceleration. On the other hand, a spaceship remaining at a fixed position relative
to the BH must keep its engine running at a constant thrust and thus has constant
proper acceleration. To make the analogy with the Unruh effect more apparent,
we chose the notation in which the coordinates (ū, v̄) always refer to freely falling
observers while the coordinates (u, v) describe accelerated frames.

8.3 Field quantization

In the previous section we introduced two coordinate systems corresponding to
a locally inertial observer (the Kruskal frame) and a locally accelerated observer
(the tortoise frame). Now we quantize the field φ(x) in these two frames and com-
pare the respective vacuum states. The considerations are formally quite similar to
those in Chapter 7.

To quantize the field φ(x), it is convenient to employ the lightcone mode ex-
pansions (defined in Sec. 7.5) in the coordinates (u, v) and (ū, v̄). Because of the
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intentionally chosen notation, the relations (97) and (98) can be directly used to

describe the quantized field φ̂ in the BH spacetime.
The lightcone mode expansion in the tortoise coordinates is

φ̂(u, v) =

∫ +∞

0

dΩ√
2π

1√
2Ω

[

e−iΩub̂−Ω +H.c.+ e−iΩv b̂−−Ω +H.c.
]

,

where the “H.c.” denotes the Hermitian conjugate terms. The operators b̂±±Ω cor-
respond to particles detected by a stationary observer at a constant distance from
the BH. The role of this observer is completely analogous to that of the uniformly
accelerated observer considered in Sec. 7.1.

The lightcone mode expansion in the Kruskal coordinates is

φ̂ (ū, v̄) =

∫ +∞

0

dω√
2π

1√
2ω

[

e−iωūâ−ω +H.c.+ e−iωv̄â−−ω +H.c.
]

.

The operators â±±ω are related to particles registered by an observer freely falling
into the black hole.

It is clear that the two sets of creation and annihilation operators â±±ω, b̂±±Ω spec-
ify two different vacuum states, |0K〉 (“Kruskal”) and |0T 〉 (“tortoise”),

â−±ω |0K〉 = 0; b̂−±Ω |0T 〉 = 0.

Exactly as in the previous chapter, the operators b̂±±Ω can be expressed through

â±±ω using the Bogolyubov transformation (103). The Bogolyubov coefficients are
found from Eq. (104) if the acceleration a is replaced by (4M)−1.

The correspondence between the Rindler and the Schwarzschild spacetimes is
summarized in the following table. (We stress that this analogy is precise only for
a conformally coupled field in 1+1 dimensions.)

Rindler Schwarzschild
Inertial observers: vacuum |0M 〉 Observers in free fall: vacuum |0K〉

Accelerated observers: |0R〉 Observers at r = const: |0T 〉
Proper acceleration a Proper acceleration (4M)−1

ū = −a−1 exp(−au) ū = −4M exp [−u/(4M)]
v̄ = a−1 exp(av) v̄ = 4M exp [v/(4M)]

8.4 Choice of vacuum

To find the expected number of particles measured by observers far outside of the
black hole, we first need to make the correct choice of the quantum state of the

field φ̂. In the present case, there are two candidate vacua, |0K〉 and |0T 〉. We shall
draw on the analogy with Sec. 7.4 to justify the choice of the Kruskal vacuum |0K〉,
which is the lowest-energy state for freely falling observers, as the quantum state
of the field.

When considering a uniformly accelerated observer in the Minkowski space-
time, the correct choice of the vacuum state is |0M 〉, which is the lowest-energy
state as measured by inertial observers. An accelerated observer registers this
state as thermally excited. The other vacuum state, |0R〉, can be physically real-
ized by an accelerated vacuum preparation device occupying a very large volume
of space. Consequently, the energy needed to prepare the field in the state |0R〉 in
the whole space is infinitely large. If one computes the mean energy density of the

field φ̂ in the state |0R〉, one finds (after subtracting the zero-point energy) that in

51



the Minkowski frame the energy density diverges at the horizon.11 On the other
hand, the Minkowski vacuum state |0M 〉 has zero energy density everywhere.

It turns out that a similar situation occurs in the BH spacetime. At first it may

appear that the field φ̂ should be in the state |0T 〉 which is the vacuum state selected
by observers remaining at a constant distance from the black hole. However, the

field φ̂ in the state |0T 〉 has an infinite energy density (after subtracting the zero-
point energy) near the BH horizon.12 Any energy density influences the metric
via the Einstein equation. A divergent energy density indicates that the backre-
action of the quantum fluctuations in the state |0T 〉 is so large near the BH hori-
zon that the Schwarzschild metric is not a good approximation for the resulting
spacetime. Thus the picture of a quantum field in the state |0T 〉 near an almost un-

perturbed black hole is inconsistent. On the other hand, the field φ̂ in the Kruskal
state |0K〉 has an everywhere finite and small energy density (when computed in
the Schwarzschild frame after a subtraction of the zero-point energy). In this case,
the backreaction of the quantum fluctuations on the metric is negligible. There-
fore one has to employ the vacuum state |0K〉 rather than the state |0T 〉 to describe
quantum fields in the presence of a classical black hole.

Another argument for selecting the Kruskal vacuum |0K〉 is the consideration
of a star that turns into a black hole through the gravitational collapse. Before the
collapse, the spacetime is almost flat and the initial state of quantum fields is the
naturally defined Minkowski vacuum |0M 〉. It can be shown that the final quantum

state of the field φ̂ after the collapse is the Kruskal vacuum.13

8.5 Hawking temperature

Observers remaining at r = const far away from the black hole (r ≫ 2M ) are in
an almost flat space where the natural vacuum state is the Minkowski one. The
Minkowski vacuum at r ≫ 2M is approximately the same as the vacuum |0T 〉.
Since the field φ̂ is in the Kruskal vacuum state |0K〉, these observers would register
the presence of particles.

The calculations of Sec. 7.7 show that the temperature measured by an acceler-
ated observer is T = a/(2π), and we have seen that the correspondence between
the Rindler and the Schwarzschild cases requires to set a = (4M)−1. It follows
that observers at a fixed distance r ≫ 2M from the black hole detect a thermal
spectrum of particles with the temperature

TH =
1

8πM
. (122)

This temperature is known as the Hawking temperature. (Observers staying closer
to the BH will see a higher temperature due to the inverse gravitational redshift.)

Similarly, we find that the density of observed particles with energy E = k is

nE =

[

exp

(

E

TH

)

− 1

]−1

.

11This result can be qualitatively understood if we recall that the Rindler coordinate ξ̃ covers an in-

finite range when approaching the horizon (ξ̃ → −∞ as ξ → −a−1). The zero-point energy density
in the state |0R〉 is constant in the Rindler frame and thus appears as an infinite concentration of en-
ergy density near the horizon in the Minkowski frame; a subtraction of the zero-point energy does not
cure this problem. We omit the detailed calculation, which requires a renormalization of the energy-
momentum tensor of the quantum field.

12This is analogous to the divergent energy density near the horizon in the Rindler vacuum state. We
again omit the required calculations.

13This was the pioneering calculation performed by S. W. Hawking.
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This formula remains valid for massive particles with mass m and momentum
k, after the natural replacement E =

√
m2 + k2. One can see that the particle

production is significant only for particles with very small masses m . TH .
The Hawking effect is in principle measurable, although the Hawking temper-

ature for plausible astrophysical black holes is extremely small. For instance, a
black hole of one solar mass M = M⊙ = 2 · 1030kg has the size of order 1km and
the Hawking temperature TH ≈ 6 · 10−8K.

8.6 Black hole thermodynamics

In many situations, a static black hole of mass M behaves as a spherical body with
radius r = 2M and surface temperature TH . According to the Stefan-Boltzmann
law, a black body radiates the flux of energy

L = γσT 4
HA,

where γ parametrizes the number of degrees of freedom available to the radiation,
σ = π2/60 is the Stefan-Boltzmann constant in Planck units, and

A = 4πR2 = 16πM2

is the surface area of the BH. The emitted flux determines the loss of energy due to
radiation. The mass of the black hole decreases with time according to

dM

dt
= −L = − γ

15360πM2
. (123)

The solution with the initial condition M |t=0 = M0 is

M(t) = M0

(

1 − t

tL

)1/3

, tL ≡ 5120π
M3

0

γ
.

This calculation suggests that black holes are fundamentally unstable objects with
the lifetime tL during which the BH completely evaporates. A calculation shows
that a black hole with a Solar mass M = M⊙ = 2 · 1030kg has a lifetime tL ∼ 1074s,
which is far greater than the age of the universe.

Laws of BH thermodynamics

Prior to the discovery of the BH radiation it was already known that black holes
require a thermodynamical description involving a nonzero intrinsic entropy.

The entropy of a system is defined as the logarithm of the number of internal
microstates of the system that are indistinguishable on the basis of macroscopi-
cally available information. Since the gravitational field of a static black hole is
completely determined (both inside and outside of the horizon) by the mass M of
the BH, one might expect that a black hole has only one microstate and therefore
its entropy is zero. However, this conclusion is inconsistent with the second law
of thermodynamics. A black hole absorbs all energy that falls onto it. If the black
hole always had zero entropy, it could absorb some thermal energy and decrease
the entropy of the world. This would violate the second law unless one assumes
that the black hole has an intrinsic entropy that grows in the process of absorption.

Similar gedanken experiments involving classical general relativity and thermo-
dynamics lead J. Bekenstein to conjecture in 1971 that a static black hole must have
an intrinsic entropy SBH proportional to the surface area A = 16πM2. However,
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the coefficient of proportionality between SBH and A could not be computed un-
til the discovery of the Hawking radiation. The precise relation between the BH
entropy and the horizon area follows from the first law of thermodynamics,

dE ≡ dM = THdSBH , (124)

where TH is the Hawking temperature for a black hole of mass M . A simple cal-
culation using Eq. (122) shows that

SBH = 4πM2 =
1

4
A. (125)

A black hole of one solar mass has the entropy S⊙ ∼ 1076.
The thermodynamical law (124) suggests that in certain circumstances black

holes behave as objects in thermal contact with their environment. This description
applies to black holes surrounded by thermal radiation and to adiabatic processes
of emission and absorption of heat.

For a complete thermodynamical description of black holes, one needs an equa-
tion of state. This is provided by the relation

E(T ) = M =
1

8πT
.

It follows that the heat capacity of the BH is negative,

CBH =
∂E

∂T
= − 1

8πT 2
< 0.

In other words, black holes become colder when they absorb heat. This unusual be-
havior leads to an instability of a BH surrounded by an infinite heat reservoir (i.e. a
heat bath with a constant temperature). If the heat reservoir has a lower temper-
ature T < TBH , the BH would give heat to the reservoir and become even hotter.
The process of evaporation will not be halted by the reservoir since its low temper-
ature T remains constant. On the other hand, a black hole placed inside a reservoir
with a higher temperature T > TBH will tend to absorb radiation from the reser-
voir and become colder. The process of absorption will continue indefinitely. In
either case, no stable equilibrium is possible. A black hole can be stabilized with
respect to absorption or emission of radiation only by a reservoir with a finite heat
capacity.

The second law of thermodynamics now states that the combined entropy of
all existing black holes and of all ordinary thermal matter never decreases,

δStotal = δSmatter +
∑

k

δS
(k)
BH ≥ 0.

Here S
(k)
BH is the entropy (125) of the k-th black hole.

In classical general relativity it has been established that the combined area
of all BH horizons cannot decrease in any interaction with classical matter (this is
Hawking’s “area theorem”). This statement applies not only to adiabatic processes
but also to strongly out-of-equilibrium situations, such as a collision of black holes
with the resulting merger. It is remarkable that this theorem, derived from a purely
classical theory, assumes the form of the second law of thermodynamics when one
considers quantum thermal effects of black holes. (The process of BH evapora-
tion is not covered by the area theorem because it significantly involves quantum
interactions.)

Moreover, there is a general connection between horizons and thermodynam-
ics which has not yet been completely elucidated. The presence of a horizon in a
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spacetime means that a loss of information occurs, since one cannot observe events
beyond the horizon. Intuitively, a loss of information entails a growth of entropy. It
seems to be generally true in the theory of relativity that any event horizon behaves
as a surface with a certain entropy and emits radiation with a certain temperature.
For instance, the Unruh effect considered in Chapter 7 can be interpreted as a ther-
modynamical consequence of the presence of a horizon in the Rindler spacetime.
A similar thermal effect (detection of particles in the Bunch-Davies vacuum state)
is also present in de Sitter spacetime which also has a horizon.

These qualitative considerations conclude the present introductory course of
quantum field theory in curved spacetime.

A Hilbert spaces and Dirac notation

Quantum operators such as p̂(t), q̂(t) can be represented by linear transformations
in suitable infinite-dimensional Hilbert spaces. In this section we summarize the
properties of Hilbert spaces and also introduce the Dirac notation. We shall always
consider complex vector spaces.

A.1 Infinite-dimensional vector spaces

A vector in a finite-dimensional space can be visualized as a collection of compo-
nents, e.g. ~a ≡ (a1, a2, a3, a4), where each ak is a (complex) number. To describe
vectors in infinite-dimensional spaces, one must use infinitely many components.
An important example of an infinite-dimensional complex vector space is the space
L2 of square-integrable functions, i.e. the set of all complex-valued functions ψ(q)
such that the integral

∫ +∞

−∞
|ψ(q)|2 dq

converges. One can check that a linear combination of two such functions, λ1ψ1(q)+
λ2ψ2(q), with constant coefficients λ1,2, is again an element of the same vector
space. A function ψ ∈ L2 can be thought of as a set of infinitely many “compo-
nents” ψq ≡ ψ(q) with a continuous “index” q.

It turns out that the space of quantum states of a point mass in quantum me-
chanics is exactly the space L2 of square-integrable functions ψ(q), where q is the
spatial coordinate of the particle. In that case the function ψ(q) is called the wave-
function. Quantum states of a two-particle system belong to the space of functions
ψ(q1, q2), where q1,2 are the coordinates of each particle. In quantum field theory,
the “coordinates” are field configurations φ(x) and the wavefunction is a func-
tional, ψ [φ(x)].

A.2 Dirac notation

Linear algebra is used in many areas of physics, and the Dirac notation is a conve-
nient shorthand for calculations with vectors and linear operators. This notation is
used for both finite- and infinite-dimensional vector spaces.

To denote a vector, Dirac proposed to write a symbol such as |a〉, |x〉, |λ〉, that
is, a label inside the special brackets |〉. Linear combinations of vectors are written
as 2 |v〉 − 3i |w〉.

A linear operator Â : V → V acting in the space V transforms a vector |v〉 into

the vector Â |v〉. (An operator Â is linear if

Â (|v〉 + λ |w〉) = Â |v〉 + λÂ |w〉
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for any |v〉 , |w〉 ∈ V and λ ∈ C.) For example, the identity operator 1̂ that does not
change any vectors, 1̂ |v〉 = |v〉, is obviously a linear operator.

Linear forms acting on vectors, f : V → C, are covectors (vectors from the dual
space) and are denoted by 〈f |. A linear form 〈f | acts on a vector |v〉 and yields the
number written as 〈f |v〉.

Usually a scalar product is defined in the space V . The scalar product of vectors
|v〉 and |w〉 can be written as (|v〉 , |w〉) and is a complex number. The scalar product
establishes a correspondence between vectors and covectors: each vector |v〉 de-
fines a covector 〈v| which is the linear map |w〉 → (|v〉 , |w〉). So the Dirac notation
allows us to write scalar products somewhat more concisely as (|v〉 , |w〉) = 〈v|w〉.

If Â is a linear operator, the notation 〈v| Â |w〉 means the scalar product of the

vectors |v〉 and Â |w〉. The quantity 〈v| Â |w〉 is also called the matrix element of

the operator Â with respect to the states |v〉 and |w〉.
The Dirac notation is convenient because the labels inside the brackets |...〉 are

typographically separated from other symbols in a formula. So for instance one
might denote specific vectors by |0〉, |1〉 (eigenvectors with integer eigenvalues), or
by |ψ〉, |aibj〉, or even by

∣

∣

(out)n1, n2, ...
〉

, without risk of confusion. Note that the
symbol |0〉 is the commonly used designation for the vacuum state, rather than the
zero vector; the latter is denoted simply by 0.

If |v〉 is an eigenvector of an operator Â with eigenvalue v, one writes

Â |v〉 = v |v〉 .

There is no confusion between the eigenvalue v (which is a number) and the vector
|v〉 labeled by its eigenvalue.

A.3 Hermiticity

The scalar product in a complex vector space is Hermitian if (〈v|w〉)∗ = 〈w|v〉 for
all vectors |v〉 and |w〉 (the asterisk ∗ denotes the complex conjugation). In that case
the norm 〈v|v〉 of a vector |v〉 is a real number.

A Hermitian scalar product allows one to define the Hermitian conjugate Â†

of an operator Â via the identity

〈v| Â† |w〉 =
(

〈w| Â |v〉
)∗
,

which should hold for all vectors |v〉 and |w〉. Note that an operator Â† is uniquely

specified if its matrix elements 〈v| Â† |w〉 with respect to all vectors |v〉, |w〉 are
known. For example, it is easy to prove that 1̂† = 1̂.

The operation of Hermitian conjugation has the properties

(Â+ B̂)† = Â† + B̂†; (λÂ)† = λ∗Â†; (ÂB̂)† = B̂†Â†.

An operator Â is called Hermitian if Â† = Â, anti-Hermitian if Â† = −Â, and

unitary if Â†Â = ÂÂ† = 1̂.
According to a postulate of quantum mechanics, the result of a measurement

of some quantity is always an eigenvalue of the operator Â corresponding to that
quantity. Eigenvalues of a Hermitian operator are always real. This motivates an
important assumption made in quantum mechanics: the operators corresponding
to all observables are Hermitian.

Example: The operators of position q̂ and momentum p̂ are Hermitian, q̂† = q̂ and

p̂† = p̂. The commutator of two Hermitian operators Â, B̂ is anti-Hermitian: [Â, B̂]† =

−[Â, B̂]. Accordingly, the commutation relation for q̂ and p̂ contains the imaginary unit
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i. The operator p̂q̂ is neither Hermitian nor anti-Hermitian: (p̂q̂)† = q̂p̂ = p̂q̂ + i~1̂ 6=
±p̂q̂.

Eigenvectors of a Hermitian operator corresponding to different eigenvalues
are always orthogonal. This is easy to prove: if |v1〉 and |v2〉 are eigenvectors of

a Hermitian operator Â with eigenvalues v1 and v2, then v1,2 are real, so 〈v1| Â =

v1 〈v1|, and 〈v1| Â |v2〉 = v2 〈v1|v2〉 = v1 〈v1|v2〉. Therefore 〈v1|v2〉 = 0 if v1 6= v2.

A.4 Hilbert spaces

In an N -dimensional vector space one can find a finite set of basis vectors |e1〉, ...,
|eN 〉 such that any vector |v〉 is uniquely expressed as a linear combination

|v〉 =

N
∑

n=1

vn |en〉 .

The coefficients vn are called components of the vector |v〉 in the basis {|en〉}. In
an orthonormal basis satisfying 〈em|en〉 = δmn, the scalar product of two vectors
|v〉, |w〉 is expressed through their components vn, wn as

〈v|w〉 =
N
∑

n=1

v∗nwn.

By definition, a vector space is infinite-dimensional if no finite set of vectors can
serve as a basis. In that case, one might expect to have an infinite basis |e1〉, |e2〉, ...,
such that any vector |v〉 is uniquely expressible as an infinite linear combination

|v〉 =

∞
∑

n=1

vn |en〉 . (126)

However, the convergence of this infinite series is a nontrivial issue. For instance,
if the basis vectors |en〉 are orthonormal, then the norm of the vector |v〉 is

〈v|v〉 =

( ∞
∑

m=1

v∗m 〈en|
)( ∞

∑

n=1

vn |en〉
)

=

∞
∑

n=1

|vn|2 . (127)

This series must converge if the vector |v〉 has a finite norm, so the numbers vn

cannot be arbitrary. We cannot expect that e.g. the sum
∑∞

n=1 n
2 |en〉 represents a

well-defined vector. Now, if the coefficients vn do fall off sufficiently rapidly so
that the series (127) is finite, it may seem plausible that the infinite linear combina-
tion (126) converges and uniquely specifies the vector |v〉. However, this statement
does not hold in all infinite-dimensional spaces. The required properties of the
vector space are known in functional analysis as completeness and separability.14

A Hilbert space is a complete vector space with a Hermitian scalar product.
When defining a quantum theory, one always chooses a separable Hilbert space
as the space of quantum states. In that case, there exists a countable basis {|en〉}
and all vectors can be expanded as in Eq. (126). Once an orthonormal basis is
chosen, all vectors |v〉 are unambiguously represented by collections (v1, v2, ...) of
their components. Therefore a separable Hilbert space can be visualized as the

14A normed vector space is complete if all norm-convergent (Cauchy) sequences in it converge to a
limit; then all norm-convergent infinite sums always have an unique vector as their limit. The space
is separable if there exists a countable set of vectors {|en〉} which is everywhere dense in the space.
Separability ensures that that all vectors can be approximated arbitrarily well by finite combinations of
the basis vectors.
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space of infinite rows of complex numbers, |v〉 ≡ (v1, v2, ...), such that the sum
∑∞

n=1 |vn|2 converges. The convergence requirement guarantees that every scalar
product 〈v|w〉 =

∑∞
n=1 v

∗
nwn is finite.

Example: The space L2 [a, b] of square-integrable wave functions ψ(q) defined on an
interval a < q < b is a separable Hilbert space, although it may appear to be “much
larger” than the space of infinite rows of numbers. The scalar product of two wave
functions ψ1,2(q) is defined by

〈ψ1|ψ2〉 =

Z b

a

ψ∗
1(q)ψ2(q)dq.

The canonical operators p̂, q̂ can be represented as linear operators in the space L2 that
act on functions ψ(q) as

p̂ : ψ(q) → −i~∂ψ
∂q
, q̂ : ψ(q) → qψ(q). (128)

It is straightforward to verify the commutation relation [q̂, p̂] = i~.

B Mode expansions cheat sheet

We present a list of formulae relevant to mode expansions of free, real scalar fields.
This should help resolve any confusion about the signs k and −k or similar tech-
nicalities.

All equations (except commutation relations) hold for operators as well as for
classical quantities. The formulae for a field quantized in a box are obtained by
replacing the factors (2π)3 in the denominators with the volume V of the box.
(Note that this replacement changes the physical dimension of the modes φk.)

φ (x, t) =

∫

d3k eik·x

(2π)3/2
φk(t); φk(t) =

∫

d3x e−ik·x

(2π)3/2
φ (x, t)

a−
k

(t) =

√

ωk

2
[φk +

i

ωk
πk]; a+

k
(t) =

√

ωk

2
[φ−k − i

ωk
π−k]

φk(t) =
a−
k

(t) + a+
−k

(t)√
2ωk

; πk(t) =

√

ωk

2

a−
k

(t) − a+
−k

(t)

i

Time-independent creation and annihilation operators â±
k

are defined by

â±
k

(t) ≡ â±
k

exp (±iωkt)

Note that all a±
k

below are time-independent.

φ†(x) = φ(x); (φk)
†

= φ−k;
(

a−
k

)†
= a+

k

π (x, t) =
d

dt
φ (x, t) ; πk(t) =

d

dt
φk(t)

[

φ̂ (x, t) , π̂ (x′, t)
]

= iδ (x− x′)
[

φ̂k(t), π̂k′(t)
]

= iδ (k + k′)
[

â−
k
, â+

k′

]

= δ (k − k′)

φ̂ (x, t) =

∫

d3k

(2π)3/2

1√
2ωk

[

â−
k
e−iωkt+ik·x + â+

k
eiωkt−ik·x]

58



Mode expansions may use anisotropic mode functions vk(t). Isotropic mode
expansions use scalar k instead of vector k because vk ≡ vk for all |k| = k.

φ̂ (x, t) =

∫

d3k

(2π)3/2

1√
2

[

â−
k
v∗
k
(t)eik·x + â+

k
vk(t)e−ik·x]

(Note: the factor
√

2 and the choice of v∗
k

instead of vk are for consistency with
literature. This could have been chosen differently.)

v−k = vk 6= v∗
k
; v̈k + ω2

k(t)vk = 0; v̇kv
∗
k
− vkv̇

∗
k

= 2i

φk(t) =
1√
2

[

a−
k
v∗
k
(t) + a+

−k
vk(t)

]

; πk(t) =
1√
2

[

a−
k
v̇∗
k
(t) + a+

−k
v̇k(t)

]

Here the a±
k

are time-independent although vk and φk, πk depend on time:

a−
k

=
1

i
√

2
[v̇k(t)φk(t) − vk(t)πk(t)] ; a+

k
=

i√
2

[v̇∗
k
(t)φ−k(t) − v∗

k
(t)π−k(t)]

Free scalar field mode functions in the flat space:

vk(t) =
1√
ωk
eiωkt.

Bogolyubov transformations

Note: â±
k

are defined by vk(η) and b̂±
k

are defined by uk(η).

v∗
k
(η) = αku

∗
k
(η) + βkuk(η); |αk|2 − |βk|2 = 1

b̂−
k

= αkâ
−
k

+ β∗
kâ

+
−k
, b̂+

k
= α∗

kâ
+
k

+ βkâ
−
−k

αk = α−k, βk = β−k

â−
k

= α∗
kb̂

−
k
− β∗

kb̂
+
−k
, â+

k
= αkb̂

+
k
− βkb̂

−
−k
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