

Hans-Christian Schultz-Coulon

Kirchhoff-Institut für Physik Universität Heidelberg

18. Heidelberger Graduiertentage, Arpil 2007

The Big Questions

How can we solve the mystery of dark energy?

Introductory Remarks What do we know ...

... what do we not know ... and what to expect

ATLAS Mini Black Hole Event

The Standard Model

A Particle Physicist's view of the world

Our Knowledge about the Higgs

Our Knowledge about the Higgs

EW-Fits: $M_H = 76^{+33}_{-24} \text{ GeV}$ $M_H < 144 \text{ GeV} @ 95\% \text{ CL}$ From direct search at LEP: $M_H > 114 \text{ GeV}$

[Updated: Spring 2007]

Consequences of a Light Higgs

Is new physics just around the corner?

Triviality and Vaccum Instability

Where the Higgs bounds come from

Consequences of a Light Higgs

Is new physics just around the corner?

Consequences of a Light Higgs

Is new physics just around the corner?

What Theorists Think About

There exists a large number of models which predict new physics at the TeV scale accesible at the LHC:

- Grand Unified Theories (SU(5), O(10), E6, ...) embed SM gauge group in larger symmetry
- Supersymmetry (SUSY around since a long time)
- Extended Higgs sector e.g. in SUSY models
- Leptoquarks
- New heavy gauge bosons
- Technicolour
- Compositeness
- Extra dimensions

Any of this is what the LHC hopes to find ...

... appart from the Higgs

The Experimental Challenge of the LHC Experiments

The LHC: Some Numbers relevant for ATLAS and CMS

2835 x 2835 proton bunches distance: 7.5 m [25 ns]

10¹¹ protons/bunch bunch crossing rate: 40 MHz

10⁹ pp-collisions/sec [i.e.: 23 pp-interactions/bunch crossing.]

Dominant Interactions: gluon-gluon, quark-quark and quark-gluon scattering

Proton-Proton Scattering @ LHC

• Hard interaction: qq, gg, qg fusion

Proton-Proton Scattering @ LHC

- Hard interaction: qq, gg, qg fusion
- Initial State Radiation (ISR)

Proton-Proton Scattering @ LHC

- Hard interaction: qq, gg, qg fusion
- Initial State Radiation (ISR)
- Secondary Interaction
 ["underlying event"]

Two Basic Architectures

ATLAS: A Toroidal LHC ApparatuS

CMS: Compact Muon Solenoid

The ATLAS Detector

ATLAS October 2005

ATLAS July 2006

ATLAS August 2006

The CMS Detector

CMS June 2002

CMS September 2005

CMS February 2007

ATLAS vs. CMS

Silicon pixels; Silicon strips; Transition Radiation Tracker; 2 T magnetic field	Inner Detector	Silicon pixels, Silicon strips, 4 T magnetic field
Lead plates as absorbers; active medium: liquid argon; outside solenoid	Electrom. Kalorimeter	Lead tungsten (PbWO4) crystals; both absorber and scintillator; inside solenoid
Central region: Iron absorber with plastic scintillating tiles; Endcaps: copper and tungsten absorber with liquid argon	Hadronic Calorimeter	Stainless steel and copper with plastic scintillating tiles
Large air-core toroid magnet; muon chambers: drift tubes and resistive plate chambers; 0.5 T magnetic field	Muon Chambers	Magnetic field from return yake (solenoid field: 4 T); muon chambers: drift tubes and resistive plate chambers

Challenge 1: Fast Trigger System

Fast selection of interesting Events Number of necessary decisions: 40 million/sec

Function T(...) is highly complex Detector data not directly available

➡ Stepwise decision

 \rightarrow Trigger Levels

Challenge 1: Fast Trigger System

L1 Trigger/DAQ system

LHC pp-Interaction Rate

Luminosity:

L = $10^{34} \text{ cm}^{-2} \text{s}^{-1}$ = 10^7 Hz/mb

Cross section:

σ ≈ 100 mb

► N = L $\sigma \approx 1 \text{ GHz}$

However:

Bunch crossing rate: 40 MHz

:. Interactions/crossing ~ 25 _____ This is a real challenge!

Challenge 2: Pile-up Events

Challenge 2: Pile-up Events

Challenge 2: Pile-up Events

Challenge 3: Radiation Environment

Radiation Dose [Gy/year]
Challenge 3: Radiation Environment

Challenge 3: Radiation Environment

Example 1 Light Yield CMS ECAL Crystals

Dose [rad]

Example 2 Silicon Tracker Depletion Voltage

The Missing Piece Searching the Higgs

The Standard Model Lagrangian

and elementary particle masses

SM Lagrangian without Higgs

where:

$$eA_{\mu} = \frac{g_s}{2}\lambda_{\nu}G^{\nu}_{\mu} + \frac{g}{2}\vec{\tau}\,\vec{W}_{\mu} + \frac{g'}{2}YB_{\mu}$$
$$F_{\mu\nu}F^{\mu\nu} = G_{\mu\nu}G^{\mu\nu} + W_{\mu\nu}W^{\mu\nu} + B_{\mu\nu}B^{\mu\nu}$$

But: $SU(2)_L \times U(1)_Y$ symmetry forbids "ad hoc" introduction of extra masses terms:

Fermions: $m\bar{\psi}\psi$ / $m\bar{\psi}\psi$ / $m\bar{\psi}\psi$ / Bosons: $m^2A_{\mu}A^{\mu}$

The Standard Model Lagrangian

and elementary particle masses

The Standard Model Lagrangian

WW scattering and unitarity violation

- $F_{\mu\nu}F^{\mu\nu}$ -term contains self couplings between gauge bosons.
- .: WW → WW possible;
 cross section:

 $\sigma_{W_L W_L} \sim E_{cm}^2$

 W_LW_L scattering probability becomes larger than unity for $E_{cm} > 1.2$ TeV ... Violation of unitarity if force remains weak at this scale ...

To restore unitary it needs some scalar boson "H" with

$$\begin{array}{c} g_{HWW} \sim M_W \\ g_{Hff} \sim M_f \\ M_H < 1 \text{ TeV} \end{array} \right\} \begin{array}{c} \sigma \rightarrow const \\ \text{for large energies} \end{array}$$

The Higgs-Kibble Mechanism

The "standard" solution

Introduce new doublet of complex scalar fields (4 degrees of freedom) with 'mexican hat' potential:

 $V(\phi) = -\mu^2 |\phi^{\dagger}\phi| + \lambda |\phi^{\dagger}\phi|^2$ with $\mu, \lambda > 0$

Lagrangian of scalar field:

 $\mathcal{L}_{\phi} = (\partial_{\mu}\phi^{\dagger})(\partial^{\mu}\phi) - V(\phi)$

 $V(\phi)$ ϕ_1 ϕ_2 $v/\sqrt{2}$

Coupling to bosons via transistion to covariant derivative. Coupling to fermions via "ad-hoc" introduction of "Yukawa" coupling.

 $\mathcal{L}_{\phi} = (D_{\mu}\phi^{\dagger})(D^{\mu}\phi) - V(\phi) \quad \text{with} \quad D_{\mu} = \partial_{\mu} + ieA_{\mu}$ $\mathcal{L}_{\text{Yuk}} = c_f(\bar{\psi}_L\psi_R\phi + \bar{\psi}_R\psi_L\phi) \quad \text{Introduction into SM Lagrangian maintains}_{\text{invariance under SU(2)}_{\text{L}} \times \text{U(1)}_{\text{y}} \text{ gauge transformation}$

The Higgs-Kibble Mechanism

The "standard" solution

Introduce new doublet of complex scalar fields (4 degrees of freedom) with 'mexican hat' potential:

 $V(\phi) = -\mu^2 |\phi^{\dagger}\phi| + \lambda |\phi^{\dagger}\phi|^2$ with $\mu, \lambda > 0$

Spontanous symmetry breaking:

System falls in to minimum of V at $\phi \neq 0$.

This results in:

- Three massless excitations along valley \rightarrow 3 longitudinal d.o.f for W[±] and Z
- One massive excitation out of valley \rightarrow 1 d.o.f for "physical" Higgs boson

Higgs field has two components: $\phi = v + H$.

- 1. omnipresent, constant background condensate v = 247 GeV (from G_F)
- 2. Higgs boson H with unknown mass $M_H = \mu \cdot \sqrt{2} = (\lambda v)^{\frac{1}{2}} \cdot \sqrt{2}$

Mass generation

and the couplings to the higgs boson

A Simple Picture Generation of particle masses

A Simple Picture

Generation of particle masses

A Simple Picutre

Generation of the Higgs mass

A Simple Picutre

Generation of the Higgs mass

Higgs Production Mechanisms

Higgs Production Cross Sections

Higgs Boson Decays

For M < 135 GeV: $H \rightarrow bb$, $\tau\tau$ dominant For M > 135 GeV: $H \rightarrow WW$, ZZ dominant

Higgs Searches @ LHC: Examples

How to Make a Discovery

Signal significance

Maximizing the Significance S

1. Choose channels with low SM background

- not possible: $H \rightarrow bb$... without associated production ...
 - possible: $H \rightarrow \gamma \gamma$... despite of small branching ratio ...
 - $H \rightarrow ZZ$... with at least one Z decaying leptonically ...
 - $++H \rightarrow bb$... via additional top selection ...

2. Optimize detector resolution

Example: mass resolution σ_m increases by a factor of 2; thus: peak region has to be increased by a factor 2 and number N_B of background events increases by factor of 2

3. Maximize luminosity L

Signal:
$$N_{\rm S} \sim L$$

Background: $N_{\rm B} \sim L$ } \rightarrow $S \sim \sqrt{L}$

The Golden Channel: $H \rightarrow 4\ell$

The Golden Channel: $H \rightarrow 4\ell$

Selection cuts:

Signal: $\sigma \cdot BR = 5.7 \, \text{fb} \, [m_{\mu} = 100 \, \text{GeV}]$

isolated leptons within $|\eta| < 2.5$, P_{T(1,2)} > 20 GeV and P_{T (3,4)} > 7 GeV one lepton pair around Z mass

Main backgrounds:

Top production: $[\sigma \cdot BR = 1300 \text{ fb}]$

 $tt \rightarrow Wb Wb \rightarrow l_V c l_V c l_V$

р

 μ^+

 μ^+

μ

μ

Associated Z-production:

 $Z bb \rightarrow \mathcal{U} c\mathcal{U} c\mathcal{U}$

Background rejection:

Leptons: non-isolated (inside jet) not from primary vertex Very clean; remaining: ZZ continuum

The hard one: $H \rightarrow \gamma \gamma$

The hard one: $H \rightarrow \gamma \gamma$

Signal: $\sigma \cdot BR \approx 50 \text{ fb } [m_{H} = 100 \text{ GeV}]$

very demanding channel due to huge irreducible background ...

very harsh requirements on calorimeter performance (acceptance, E and θ resolution, separation of γ from jets and π^0)

р

The hard one: $H \rightarrow \gamma \gamma$

The Vector Boson Fusion Channel

Motivation: Improve low mass discovery potential Improve measurement of Higgs boson paramters [Coupling to bosons, fermions]

Distinctive signature:

- two forward jets (tagging jets)
- little (jet) activity in central region (central jet veto)

Higgs: Background Systematics

Channel	Main background	S/B	Bkg. sys for 5s	Proposed technique/comments
Η->γγ	Irreduc. γγ Reducible qγ	3-5%	0.8%	Side-bands (bkg shape not known a priori)
ttH H->bb	ttbb	30%	6%	Mass side-bands Anti b-tagged ttjj e∨.
H->ZZ*-> 4 lep	ZZ->4l Reducible tt, Zbb	300-600%	60%	Mass side-bands Stat Err <30% 30fb ⁻¹
H->WW*->II _{∨∨}	WW*, tW	30-150%	6-30%	No mass peak Bkg control region and extrapolation
VBF channels In general	Rejection QCD/EW	Study forward jet tag and central jet veto		Use EW ZZ and WW QCD Z/W + jets
VFB H->WW	tt, WW, Wt	50-200%	10%	Study Z,W,WW and tt plus jets
VBF Η->ττ	Zjj, tt	50-200%	10-40%	Mass side-bands Beware of resolution tails

LHC: Higgs Discovery Potential

LHC: Higgs Discovery Potential

Full mass range can already be covered after a few years at low luminosity

Several channels available over a large range of masses

Low mass discovery requires combination of three of the most demanding channels

Comparable situation for the CMS experiment

Tevatron: Higgs Discovery Potential

Tevatorn: Recent Results

New Physics Scenarios Supersymmetry

"One day, all of these will be supersymmetric phenomenology papers."

Motivation

Electrons in classical Electrodynamics

Electromagnetic self-energy:

$$\Delta E_C = \frac{1}{4\pi\epsilon_0} \frac{e^2}{r_e}$$

Self-energy must be part of electron mass:

QED: Photon exchange \Leftrightarrow Coulomb law

$$(m_e c^2)_{observed} = (m_e c^2)_{bare} + \Delta E_C$$

Experiment:

$$r_e < 10^{-17} \text{ cm} \rightarrow \Delta E_c > 10 \text{ GeV}$$

 $m_e = 511 \text{ keV} = 0.511 \text{ MeV}$

$$(m_e c^2)_{bare} = (m_e c^2)_{observed} - \Delta E_C$$

= 0.511 MeV - 10000 MeV
= -9999.489 MeV

Classical Electrodynamic not valid vor $\Delta E_c > m_e c^2$, i.e. for d < 2.8 $\cdot 10^{-13}$. [from d < $e^2/4\pi\epsilon_0 m_e c^2$]

Motivation

Electrons in Quantum Electrodynamics

Description of self-energy in Quantum Electrodynamics via photon exchange.

Introduction of positron ... cure of "fine-tuning problem" via vacuum fluctuations.

: Modify physics at

 $\label{eq:classical_states} \begin{array}{l} d \thicksim c \Delta t \thicksim 200 \cdot 10^{\text{-13}} \text{ cm} \\ \text{with } \Delta t \thicksim \hbar / \Delta E \thicksim \hbar / 2 m_e c^2 \end{array}$

QED: Photon exchange \Leftrightarrow Coulomb law

Vacuum fluctuations: e⁺e⁻-pair production

Motivation

Electrons in Quantum Electrodynamics

Description of self-energy in Quantum Electrodynamics via photon exchange.

Introduction of positron ... cure of "fine-tuning problem" via vacuum fluctuations.

: Modify physics at

 $\label{eq:classical_states} \begin{array}{l} d \thicksim c \Delta t \thicksim 200 \cdot 10^{\text{-13}} \text{ cm} \\ \text{with } \Delta t \thicksim \hbar / \Delta E \thicksim \hbar / 2 m_e c^2 \end{array}$

Doubling d.o.f. & symmetry result in divergence cancellation. "Naturally" small mass correction.

QED: Photon exchange \Leftrightarrow Coulomb law

Vacuum fluctuations: e⁺e⁻-pair production

$$(m_e c^2)_{observed} = (m_e c^2)_{bare} \left[1 + \frac{3\alpha}{4\pi} \log \frac{\hbar}{m_e c r_e} \right]$$

Motivation

Supersymmetry and the Higgs self-energy

• "Naturalness" argument: $m_{\tilde{f}}$ not much larger than m_t , i.e. $m_{\tilde{f}}$ in TeV range.

Supersymmetric Particle Spectrum

Minimal Supersymmetric Models

- Extension of the Standard Model
 - Supersymmetric partner for each SM particle
 - 2 Higgs doublets
 - Minimal structure to guarantee cancellations of anomalies
 - Two Higgs field needed to give masses to 'up' and 'down' type quarks in a consistent way
- New quantum number: R-parity R_p

Particles $: R_p = +1$

S-Particles : $R_p = -1$

R_p-conservation circumvents proton decay; conservation of B-L

$R_p = (-1)^{B+L+2S}$

Motivation of SUSY

Avoid divergent quantum corrections to Higgs mass Allows for unification of gauge couplings Existence of lightest supersymmetric particle (LSP); candidate for dark matter

Broken Supersymmetry

SUSY breaking leads to extra parameters

Unconstrained models: 105 parameters (Masses, couplings, phases) Constrained models: 4 or 5 parameters, assuming SUSY breaking scheme Examples: mSugra, cMSSM ...

mSUGRA - A Constrained Model

• Unification assumption

Assume universal masses for all bosons and fermions at the GUT (Grand Unification Theory) scale

• Symmetry breaking assumption

Model where breaking is mediated by gravity

Results in

• 5 remaining parameters

- mo: universal boson (scalar) mass
- $m_{\frac{1}{2}}$: universal gaugino mass
- A₀: universal trilinear coupling
- tanβ: ratio of the two Higgs VEVs (vacuum expectation values)
- $\text{sgn}(\mu)$: sign of the higgsino mass parameter

mSUGRA Mass Spectrum

Running masses:

Universal Masses at GUT scale lead to Sparticle masses at EW scale via RGE evolution

SUSY Production and Decay

Pairwise production Example: Clear Signature Gluino production q - 3 isolated leptons • missing energy - 6 jets • events with many leptons - 2 b-quark jets - Et.miss and jets. $\tilde{\chi}_2^0$ ã $\tilde{\gamma}0$ t1 ĝ W/ N But: Long decay chains b q b dominant background: SUSY itself cannot discuss sParticles in isolation **q** - use consistent model for simulation

mSUGRA: Discovery Potential

- Select: ≥ 4 jets, E_{T,miss}
- Reconstruct effective mass

Inclusive signature for squarks and gluinos up to 2.5 TeV

Effective mass approximates

M_{SUSY}: "mass scale of SUSY breaking" [mSUGRA: M_{SUSY} = min(M_u,M_g)]

mSUGRA: Discovery Potential

- Select: > 4 jets, ET,miss
- Reconstruct effective mass

Inclusive signature for squarks and gluinos

Early discovery potential for squarks and gluinos up to TeV scale

Experimental Challenge: ET, miss

Most important SUSY signature: E_{T,miss} Requires precise control of instrumental effects ...

machine background beam-gas events hot cells regions with poor jet response displaced vertices and many more ...

Partial List:

Experimental Challenge: ET, miss

Determining sParticle Properties

Kinematic Endpoint Analysis

Further SUSY Models

R-parity violation

Introduces couplings between lepton and quarks ("Leptoquarks") Leads to lepton number violation

• Gauge mediated symmetry breaking (GSMB)

Phenomenology

Gravitino is the lightest supersymmetric particle (LSP); m < 1 keV Possible existence of long lived NLSP (stau, slepton)

Important signature: $\chi_1^0 \rightarrow \gamma G$

• NMSSM (next to minimal ...)

Non-universal mass, i.e. more paramters ...

• Split SUSY

Heavy scalars, light higgs, higgsinos and gauginos; signature: long lived gluinos (>>>> displaced vertex, stopped gluinos)

New Physics Scenarios Extra Dimensions

Extra Dimensions - A Simple Picture

Our world:

- 3 space-dimensions
- 1 time-dimension

Extra Dimensions - A Simple Picture

Our world:

- 3 space-dimensions
- 1 time-dimension

Extra Dimensions - A Simple Picture

Our world:

3 space-dimensions

1 time-dimension

Extra dimensions: [if they exist]

obviously "invisible" (hidden)

i.e. must have final size must be of small extension

Motivation

The Hierarchy Problem

Electroweak scale: 10² GeV

Scale of the higgs field, which gives mass to the heavy gauge bosons W and Z

GUT scale: 10¹⁶ GeV

Unification scale where strong, weak and, electromagnetic forces are of equal strength [Extrapolation: Supersymmetry]

Planck scale: 10¹⁹ GeV

Scale at which quantum fluctuations destroy space time structure.

The Standard Model of elementry particles does not explain the hierarchy problem

Extra Space-Dimensions

and the law of gravity

Law of Gravity:

Conflict with every day life?

Compactified Dimensions

Extra dimensions with final size

r » R:

SM interactions tested up to r $\sim 10^{-18}$ m

But gravity ... only tested down to about 0.1 mm

No conflict ... if only gravity 'lives' in extra dimensions

Hierarchy Problem

An explanation through extra dimensions

The real Planck Scale:

i.e. energy scale at which gravity gets 'strong'

Possible Size and Number

of extra space dimensions

n	$R \approx 10^{\frac{30}{n} - 18} \text{cm} \times \left(\frac{1\text{TeV}}{M_{\text{EW}}}\right)^{1 + \frac{2}{n}}$
1	70 AU
2	1.0 mm
3	1.0 nm
4	10 pm
7	3.7.fm
7	3.7 fm

Large Extra Dimensions

[Arkani-Hamed, Dvali, Dimopoulos]

- n compactified extra space dimensions with size R
- gravity in all n+3 space dimensions
- SM interactions and all matter particles are confined to our 3-dimensional world.

Extra Dimensions

Consequences for particle physics

Missing energy in particle reactions [Graviton emission into hidden space dimensions]

> Change of cross sections [Exchange of virtual gravitons]

> > New Particles [Kaluza-Klein excitations]

Production of Mini Black Holes [End of short distance physics]

Signatures for Extra Dimensions

Missing Energy in Particle Reactions

In particle reactions produced gravitons leave our 3D-world (3D-brane) and are thus not detected.

qq-signature (e.g. LHC):

- high-energy Monojet
- missing energy
- e⁺e⁻-signature (e.g. ILC):
 - single photon
 - missing energy

Signatures for Extra Dimensions

Monojets + ET,miss

Kaluza-Klein Modes

Extra dimension final size \rightarrow quantized energies

Kaluza-Klein Modes

Experimental Consequences I

SM particle

Kaluza-Klein Modes

Experimental Consequences II

Mini Black Holes

Production and Decay

Mini Black Holes

Experimental Signature

Mini Black Holes

Cross Section

Prerequisites Parton Densities and the LHC

Hadron-Hadron Interactions

Basic kinematic variables

Hadron-Hadron Interactions

How to caculate cross sections

Proton Structure in one Slide

- x_{1,2}: fractional momentum of parton involve in hard process
- Q^2 : scale; spacial resolution

Parton Densities - HERA Results

i.e. to produce a particle with mass M at LHC energies (Js = 14 TeV)
<x> = Jx₁x₂ = M/Js [x₁ = x₂: mid-rapidity]

LHC needs:

- knowledge on parton densities
- extrapolation over orders of magnitude

Jet Spectrum @ LHC


```
First plot
to be made at LHC
```

Sensitive to:

- Parton distribution functions
- Detector performance [Energy scale and resolution]
- New Physics

Relative Uncertainty [compared to CTEQ 6.1M]

Quark Substructure [Compositeness]

Expectation: Enhancement of σ_{jet} at high E_{T}

W and Z Production @ LHC

Parton Densities Determination @ LHC

Vector Boson Production

- At LHC energies these processes take place at low values of Bjorken-x
- Only sea quarks and gluons are involved
- At EW scales sea is driven by the gluon,
 i.e. x-sections dominated by gluon uncertainty
- Constraints on sea and gluon distributions

Single W and Z Production

Effect on PDFs of LHC W data

Concluding Remarks

LHC Challenges

High Rates: triggering, pile-up, radiation ...

LHC Prerequisites

Understanding of detector performance, SM backgrounds, parton densities ...

LHC Hopes

Higgs, SUSY, Extra Dimensions...

There are exciting times ahead ...

... starting 2008 !!

End of Lecture

Thanks to:

Karl Jakobs Victor Lendermann Markus Schumacher Stefan Tapprogge

... and many others, who - knowing or unknowingly - provided their slides to me.