

Precision measurements of loop-dominated B decays as possible probes for New Physics

Ulrich Uwer

Physikalisches Institut Heidelberg

<u>Content:</u> Motivation Theoretical Introduction LHCb Experiment LHCb Measurements and expected performance

Motivation

Precision B Meson Physics as Probe for New Physics in Loop-Processes:

Box Diagrams (Oscillation)

Penguin Decays

Popular New Physics Scenarios: SUSY, Little Higgs Models Deviations from Standard Model predictions

Complementary to direct New Physics searches by ATLAS and CMS

Examples from the past

GIM Mechanism

Observed branching ratio $K^0 \rightarrow \mu\mu$

$$\frac{BR(K_{L} \to \mu^{+}\mu^{-})}{BR(K_{L} \to all)} = (7.2 \pm 0.5) \cdot 10^{-9}$$

In contradiction with theoretical expectation in the 3-Quark Model

Glashow, Iliopolus, Maiani (1970):

Prediction of a 2nd up-type quark, additional Feynman graph cancels the "u box graph".

 $M \sim \sin \theta_c \cos \theta_c$

 $M \sim -\sin\theta_c \cos\theta_c$

More Examples

- 1. Interpretation of precision measurements (CP asymmetries, charge asymmetries, branching ratios) requires good understanding of the "old physics" (Standard Model).
- 2. Nobel Prizes are generally not awarded for "dubious" conclusions from precision measurements.

Go to ATLAS and CMS? But are all questions solvable?

- 3. New particles / signatures found with ATLAS and CMS must interact with existing particles: What is the flavor structure of NP ? What are the coupling of NP ?
- 4. Particles at ~1 TeV scale are difficult to be directly observed

Wait for new collider ? Exploit the B Physics Potential of LHC !

Theoretical Introduction

- Quark Mixing and CKM matrix
- Mixing phenomenon
- C, P and CP Violation
- CP Violation in the Standard Model
- Standard Model and Baryon Asymmetry in the Universe
- Measurement of CP Violation
- CKM Metrology
- Rare (Penguin) decays

Quark Mixing in Standard Model

Standard Model Lagrangian:

Yukawa coupling between fermions and the Higgs field

(ď

Spontaneous symmetry breaking =

Massive fermions $m_f \sim Y_f \cdot v / \sqrt{2}$

For quarks: mass eigenstates different from weak eigenstates

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \cdot \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$
weak CKM matrix mass

Charged currents:

$$J^+_{\mu} \propto (\bar{u}, \bar{c}, \bar{t}) (1 - \gamma_5) \gamma_{\mu}$$
 s

 $d \underbrace{V_{ud}}_{i} U$ $\frac{d}{i} W$ $(\bar{u}, \bar{c}, \bar{t}) (1 - \gamma_5) \gamma_{\mu} V_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$

complex, unitary 3x3 matrix:

4 real Parameter = 3 Euler-angles und 1 Phase

Quark Mixing and Flavor Oscillation

Flavor states B^0 and $\overline{B}^0 \neq$ Mass eigenstates B_H and B_L

Mixing phenomenology decribed by

$$i\frac{d}{dt} \begin{pmatrix} B^{0} \\ \overline{B}^{0} \end{pmatrix} = \mathbf{H} \begin{pmatrix} B^{0} \\ \overline{B}^{0} \end{pmatrix} = \begin{pmatrix} H_{11} & H_{21} \\ H_{12} & H_{22} \end{pmatrix} \begin{pmatrix} B^{0} \\ \overline{B}^{0} \end{pmatrix} = \begin{pmatrix} \mathbf{M} - \frac{i}{2}\Gamma \\ \overline{B}^{0} \end{pmatrix} = \begin{pmatrix} m_{11} - \frac{i}{2}\Gamma_{11} & m_{12}^{*} - \frac{i}{2}\Gamma_{12}^{*} \\ m_{12} - \frac{i}{2}\Gamma_{12} & m_{22} - \frac{i}{2}\Gamma_{22} \end{pmatrix} \begin{pmatrix} B^{0} \\ \overline{B}^{0} \end{pmatrix} = \begin{pmatrix} m_{11} - \frac{i}{2}\Gamma_{11} & m_{12}^{*} - \frac{i}{2}\Gamma_{12}^{*} \\ m_{12} - \frac{i}{2}\Gamma_{12} & m_{22} - \frac{i}{2}\Gamma_{22} \end{pmatrix} \begin{pmatrix} B^{0} \\ \overline{B}^{0} \end{pmatrix}$$

Diagonal elements: $|\psi(t)\rangle = |\psi_0\rangle \cdot e^{-imt} \cdot e^{-\frac{1}{2}\Gamma t}$

$$H_{11} = H_{22} = H$$

$$CPT \implies m_{11} = m_{22} = m$$

$$\Gamma_{11} = \Gamma_{22} = \Gamma$$

Off-diag elements: mixing **M** and Γ hermitian: $m_{21} = m_{12}^{*}$ $\Gamma_{21} = \Gamma_{12}^{*}$ Mixing phase ϕ = arg(m₁₂)

Flavor and Mass Eigenstates

⇒ Diagonalizing Hamitonian:

Mass eigenstates

 $|B_L\rangle = p|B^0\rangle + q|\overline{B^0}\rangle$ with m_{L,Γ_L} $|B_H\rangle = p|B^0\rangle - q|\overline{B^0}\rangle$ with m_{H,Γ_H}

 $|p|^2 + |q|^2 = 1$ complex coefficients Flavor states

$$\left| B^{0} \right\rangle = \frac{1}{2p} \left(\left| B_{L} \right\rangle + \left| B_{H} \right\rangle \right)$$
$$\left| \overline{B}^{0} \right\rangle = \frac{1}{2q} \left(\left| B_{L} \right\rangle - \left| B_{H} \right\rangle \right)$$

Parameters of the mass states

$$m_{H,L} = m \pm \operatorname{Re} \sqrt{H_{12}H_{21}}$$

$$\Gamma_{H,L} = \Gamma \mp 2\operatorname{Im} \sqrt{H_{12}H_{21}}$$

$$\Delta m = m_H - m_L = 2\operatorname{Re} \sqrt{H_{12}H_{21}}$$

$$\Delta \Gamma = \Gamma_H - \Gamma_L = -4\operatorname{Im} \sqrt{H_{12}H_{21}}$$

$$x \equiv \frac{\Delta m}{\Gamma} \quad \text{und} \quad y \equiv \frac{\Delta\Gamma}{2\Gamma}$$

Neutral B mesons

$$\begin{split} \Delta m_d &= 0.502 \pm 0.007 \text{ ps}^{-1} \text{ (PDG)} \\ \Delta m_s &= 17.78 \pm 0.12 \text{ ps}^{-1} \text{ (CDF)} \\ \Delta \Gamma \, / \, \Gamma < 0.07 \text{ (90\% } CL \text{)} \\ \Delta \Gamma_s \, / \, \Gamma_s &= 0.09 \pm 0.64 \text{ (Moriond07)} \end{split}$$

Mixing of neutral mesons

$$\underbrace{P(B^{0} \rightarrow B^{0}) = P(\overline{B^{0}} \rightarrow \overline{B^{0}}) = \frac{1}{4} \left[e^{-\Gamma_{L}t} + e^{-\Gamma_{H}t} + 2e^{-(\Gamma_{L} + \Gamma_{H})t/2} \cos \Delta mt \right]}_{CPT}$$

$$P(B^{0} \rightarrow \overline{B^{0}}) = \frac{1}{4} \left| \frac{q}{p} \right|^{2} \left[e^{-\Gamma_{L}t} + e^{-\Gamma_{H}t} - 2e^{-(\Gamma_{L} + \Gamma_{H})t/2} \cos \Delta mt \right] \qquad \Delta m = m_{H} - m_{L}$$

$$P(\overline{B^{0}} \rightarrow B^{0}) = \frac{1}{4} \left| \frac{p}{q} \right|^{2} \left[e^{-\Gamma_{L}t} + e^{-\Gamma_{H}t} - 2e^{-(\Gamma_{L} + \Gamma_{H})t/2} \cos \Delta mt \right]$$

B⁰-B⁰ Mixing

Standard Model Prediction

 $B_d^0 - \overline{B}_d^0$

$$\Delta m_{d} = \frac{G_{F}^{2}}{6\pi^{2}} m_{B} f_{B}^{2} B_{B} (V_{td}^{*} V_{tb})^{2} m_{W}^{2} \eta_{B} F\left(\frac{m_{t}^{2}}{m_{W}^{2}}\right) \leftarrow \text{e.w. correction}$$

 $f_B^2 B_B = (235 \pm 33 \pm 12)^2 MeV^2$ from lattice QCD

$$\Delta m_s \sim (V_{ts}^* V_{tb})^2$$

B⁰ Oscillation

Discrete Symmetries

Time inversion T

 $\vec{L} \rightarrow \vec{L}$

 $t \rightarrow -t$

Weak Interaction: P, C and CP Symmetry

While the weak interaction violates C and P maximally, CP was thought to be a good symmetry until 1964, when CPV was observed in K decays: Small (10⁻³) effect !

CP Violation in B Meson Decays

Summer 2001

CP Violation in B decays:

$$A_{CP}(t) = \frac{\Gamma(\overline{B}^0 \to f)(t) - \Gamma(B^0 \to f)(t)}{\Gamma(\overline{B}^0 \to f)(t) + \Gamma(B^0 \to f)(t)}$$

CP Asymmetry "70 % effect"

BR ~ 4x10⁻⁴

CP violation is observed in many B decays with loop-contributions but also in tree-dominated decays.

CP Violation in the Standard Model

Quarks

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix} \qquad d \checkmark \begin{pmatrix} V_{td} \\ V_{td} \\ V_{tb} \end{pmatrix}$$

Anti-quarks:

$$\begin{pmatrix} \overline{d} \\ \overline{s} \\ \overline{s} \\ \overline{b} \end{pmatrix} = \begin{pmatrix} V_{ud}^* & V_{us}^* & V_{ub}^* \\ V_{cd}^* & V_{cs}^* & V_{cb}^* \\ V_{td}^* & V_{ts}^* & V_{tb}^* \end{pmatrix} \begin{pmatrix} \overline{d} \\ \overline{s} \\ \overline{b} \end{pmatrix}$$

CP Violation \Leftrightarrow complex matrix elements

Unitarity Triangle

$$\begin{pmatrix} V_{ud}^{*} & V_{cd}^{*} & V_{td}^{*} \\ V_{us}^{*} & V_{cs}^{*} & V_{ts}^{*} \\ V_{ub}^{*} & V_{cb}^{*} & V_{tb}^{*} \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\Rightarrow V_{ud} V_{ub}^{*} + V_{cd} V_{cb}^{*} + V_{td} V_{tb}^{*} = 0$$

CP Violation if Triangle has finite area !

Standard Model & Baryon-Asymmetry

Explains the Standard Model the Baryon-Asymmetry of the Universe ?

Sacharow Conditions:

- Baryon number violation
- C und CP violation
- Deviation from thermal equilibr, NO
- CP Violation in quark sector by faktor ~10¹⁰ too small.
- For M_{Higgs}> 114 GeV: Symmetry breaking = 2nd order phase transition

Attractive: SUSY extensions of the Standard Model

- Additional CP Violation
- extended Higgs-Sector \rightarrow strong phase transition

Alternatives: Lepto-Baryogenesis

Measurement of CP violating Phases

$$|A|^{2} = A_{1}^{2} + A_{2}^{2}$$
$$+ 2A_{1}A_{2}\cos(\phi_{CP} + \delta)$$

$$|A|^2 = A_1^2 + A_2^2 + A_2^2 + 2A_1A_2\cos(\phi_{CP} - \delta)$$

"Golden" Decay $B^0 \rightarrow J/\psi K_s$

"Golden" Decay B⁰→J/ψK_s

CKM Phases from CPV in B Decays

Very rare decays \rightarrow several 10⁹ B mesons necessary

CKM Metrology

CKM Metrology

CKM Mechanism is primary source of CP violation in quark sector. Test of New Physics needs high precision measurements of α , $\beta \gamma$.

Further New Physics Searches

CPV in Penguin suppressed decays:

 $B^{0}(\overline{B}^{0}) \to \phi K_{s}$ $B^{0}_{s}(\overline{B}^{0}_{s}) \to \phi \phi \qquad BR \sim 10^{-6} \quad (visible)$

B_s mixing diagrams (non SM phases):

$$B_{s}^{0}(\overline{B}_{s}^{0}) \rightarrow J/\psi \phi$$

BR ~ 3 × 10⁻⁵ (visible)

Rates of rare decays:

$$B^0 \to K^{(*)}\ell\ell$$

 $B^0_{(s)} \to \mu\mu \qquad BR \sim 10^{-9}$

Pinguin-Graphen

B Physics at the LHC

B Physics

Program

Dedicated B Experiment

B Physics Program

B Prodcution at LHC: pp @ 14 TeV → $\sigma_{bb} \approx 500 \,\mu b$ 40% B%B⁺, 10% B_s, 10% b-baryons but 40 MHz IA rate, $\sigma_{inel} \approx 80 \,m b$

B Production at LHC

<u>LHC</u>

• pp collisions at $\sqrt{s} = 14 \text{ TeV}$

 $\begin{cases} \sigma_{\text{inel}} \, \textbf{\sim} \, 80 \, \text{mb} \\ \sigma_{\text{bb}} \, \textbf{\sim} \, 500 \, \mu\text{b} \end{cases}$

- Forward production of bb, correlated
- for L ~ 2 x 10³² cm⁻²s⁻¹ (defocused beams at LHCb IP)

~10¹² b \overline{b} events/yr produced

<u>LHCb</u>

Single arm forward spectrometer
 12 mrad < θ < 300 mrad(1.8<η<4.9)

B Physics & LHC Detectors

ATLAS/CMS:

- optimized for high-pT discovery physics
- central detectors, $|\eta| < 2.5$
- B physics using high-pT muon triggers, Purely hadronic modes triggered by "opposite" tagging muon
- aim for highest possible luminosities: expect L<2×10³³ cm⁻²s⁻¹ for first 3 yr → n=5 (afterwards L~ 10³³ cm⁻²s⁻¹ → n=25)

LHCb:

- designed to maximize B acceptance
- Forward, single arm spectrometer, 1.9 < η < 4.9 (bb pairs correlated, mainly forward)
- Excellent vertexing and particle ID (K/ π separation)
- "lower" pT triggers, including purely hadronic modes, very flexible
- Luminosity tuneable by adjusting beam focus: run at L ~ 2×10^{32} cm⁻²s⁻¹ \rightarrow n \approx 0.5

n = # of pp interactions/crossing

Typical Event

- Decay length L typical ~ 7 mm
- Decay products with $p \sim 1-100 \text{ GeV}$
- Trigger on "low p_t" particles (similar to backgr)

Typical Event

LHCb Detector

LHCb detector

Forward spectrometer (running in pp collider mode) Inner acceptance 10 mrad from conical beryllium **beam pipe**

LHCb detector

Vertex locator around the interaction region Silicon strip detector with ~ 30 μ m impact-parameter resolution

Vertex detector

- •21 stations w/ double sided silicon sensors
- micro-strip sensors with $r\phi$ geometry,
- approach to 8 mm from beam (inside complex secondary vacuum system)

Vertex Reconstruction

Proper time resolution (ps)

LHCb detector

Tracking system and dipole magnet to measure angles and momenta

 $\Delta p/p \sim 0.4$ %, mass resolution ~ 14 MeV (for $B_s \rightarrow D_s K$)

Main Tracking Stations

264 Module

	OT occupancy
average	4.3 %
top	5.4 %
corner	6.6 %
side	6.3 %

Outer Tracker

Outer Tracker

LHCb detector

Two RICH detectors for charged hadron identification

RICH = Ring Imaging CHerenkov Detector

RICH detectors are the specialized detectors to allow charged hadron (π, K, p) identification.

Important for B physics, as there are many hadronic decay modes e.g.: $B_s \rightarrow D_s^- K^+ \rightarrow (K^+ K^- \pi^-) K^+$

Since $\sim 7 \times$ more π than K are produced in pp events, making the mass combinations would give rise to large *combinatorial background* unless K and π tracks can be separated

Particle Identification

Particle Identification

Background suppression with PID

LHCb detector

Calorimeter system to identify electrons, hadrons and neutrals Important for the first level (Level 0) of the trigger.

LHCb detector

Muon system to identify muons, also used in first level (L0) of the trigger

Trigger Level-0

Higher Level Trigger

L0, HLT and L0×HLT efficiency

2 KHz Storage (event size ~ 50 kB)

HLT rate	Event type	Calibration	Physics
200 Hz	Exclusive B candidates	Tagging	B (core program)
600 Hz	High mass di-muons	Tracking	J/ψ , b $\rightarrow J/\psi X$ (unbiased)
300 Hz	D* candidates	PID	Charm (mixing & CPV)
900 Hz	Inclusive b (e.g. $b \rightarrow \mu$)	Trigger	B (data mining)

Necessary Tool: B Flavor Tagging

Signal B (same side tagging)

- Fragmentation kaon near B_s
- Tagging B (opposite tagging)
- lepton
- kaon
- Vertex charge

Dilution form oscillation if B⁰

Mistag rate

Тад	ε _{Tag} (%)	w (%)	ε _{eff} (%)
Muon	11	35	1.0
Electron	5	36	0.4
Kaon	17	31	2.4
Vertex Charge	24	40	1.0
Frag. kaon (B _s)	18	33	2.1
Combined B ⁰ (de	~4		
Combined B _s tri	~6		

LHCb - Expected Physics Performance

- sin(2β) the reference measurement
- B_s mixing
 - Δm_s with $B_s^0 \rightarrow D_s \pi$
 - ϕ_s and $\Delta\Gamma_s$ with $B^0_s \rightarrow J/\psi \phi(\eta)$
- Measurement of γ
- Rare decays
 - $B_s^0 \rightarrow \mu^+ \mu^-$
 - Exclusive b \rightarrow s $\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$

sin(2 β) in B⁰ \rightarrow J/ ψ K_s

- sin(2β) will be measured very precisely at e⁺e⁻ B factories.
 Expect. for 2008: σ(sin2β)~0.02
- Not a primary goal for LHCb. Measurement will serve as reference:

 $A_{CP}(t) =$

$$\frac{N(\overline{B}^{0} \to J/\psi K_{s})(t) - N(B^{0} \to J/\psi K_{s})(t)}{N(\overline{B}^{0} \to J/\psi K_{s})(t) + N(B^{0} \to J/\psi K_{s})(t)}$$

$$= \sin(\phi_{d} + \phi_{J/\psi K}) \sin(\Delta m t)$$
$$= \sin 2\beta \sin(\Delta m t)$$

⇒ σ_{stat}(sin2β) ~ 0.02 (for 2 fb⁻¹, 1 yr)

sin(2β) in Penguin Decays

$$\mathsf{B}^0(\overline{\mathsf{B}}^0) \to \phi\,\mathsf{K}^0$$

Standard Model

SUSY contributions

 $A_{CP}(t) = \sin 2\beta_{eff} \sin(\Delta m t)$

 $A_{CP}(t) = \sin 2\beta \sin(\Delta m t)$ $= \sin 2\beta (J/\psi K_s)$

≠

 $sin 2\beta_{eff}$

LHCb Measurement of Penguin Decays

	sin($(2\beta^{\text{eff}})$	$\equiv \sin \theta$	(2 ¢	PRELIMINARY
b→ccs [*]	World Aver	age			0.68 ± 0.03
	BaBar		* <mark>5</mark>		$0.12 \pm 0.31 \pm 0.10$
X X	Belle				$0.50 \pm 0.21 \pm 0.06$
	Average				0.39 ± 0.18
0	BaBar		-		$0.55 \pm 0.11 \pm 0.02$
×	Belle		1	-	$0.64 \pm 0.10 \pm 0.04$
_ ۲	Average		-		0.59 ± 0.08
L 7,	BaBar		C a	-	$0.66 \pm 0.26 \pm 0.08$
⊥ ×°	Belle				$0.30 \pm 0.32 \pm 0.08$
y so	Average				0.51 ± 0.21
γ	BaBar		1 <mark>(7 k</mark> ar		$0.33 \pm 0.26 \pm 0.04$
	Belle				$0.33 \pm 0.35 \pm 0.08$
ĸ	Average		, ⊥ ,≝		0.33 ± 0.21
L X	BaBar				$0.17 \pm 0.52 \pm 0.26$
ୖୄ	Average		<u> ★ </u> <u>⊔</u>		0.17 ± 0.58
S	BaBar		5 7	-	$0.62 {}^{+0.25}_{-0.30} \pm 0.02$
X	Belle		* - •		$0.11 \pm 0.46 \pm 0.07$
3	Average				0.48 ± 0.24
0	BaBar		ত্র	-	0.62 ± 0.23
l x	Belle		⊷ ★ <mark>≦</mark> _		$0.18 \pm 0.23 \pm 0.11$
_ م	Average				0.42 ± 0.17
⊂ ×	Ba <mark>Bar</mark> 🗧	*			$-0.84 \pm 0.71 \pm 0.08$
ц к	Ave <mark>rage</mark>	*			-0.84 ± 0.71
R S S	BaBar Q2E		► • • • •	C	$0.41 \pm 0.18 \pm 0.07 \pm 0.11$
<u>`</u>	Belle		1		$0.68 \pm 0.15 \pm 0.03 \begin{array}{c} +0.21 \\ -0.13 \end{array}$
+	Average		-		$0.58\pm0.13^{+0.12}_{-0.09}$
-2	-	1	0	1	2

Experimental status (2006)

- $sin(2\beta)$ in penguin decays always lower than $sin(2\beta)$ in $B^0 \rightarrow J/\psi K_s$
- Statistics ? Need more data !

LHCb:

σ_{stat}(sin2β) =0.12…0.18 (10 fb⁻¹, 5 yr) ~4000 evts

Similar:

 $A_{CP}(B_s \rightarrow \phi \phi)$: $\sigma_{\text{stat}} \approx \pm 0.04$

Second triangle accessible at LHCb

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Different in O(\lambda^5)

B_s Mixing

$$i\frac{d}{dt}\begin{pmatrix} B_{s}^{0} \\ \overline{B}_{s}^{0} \end{pmatrix} = \mathbf{H}\begin{pmatrix} B_{s}^{0} \\ \overline{B}_{s}^{0} \end{pmatrix} = \begin{pmatrix} m_{11} - \frac{i}{2}\Gamma_{11} & m_{12}^{*} - \frac{i}{2}\Gamma_{12} \\ m_{12} - \frac{i}{2}\Gamma_{12} & m_{22} - \frac{i}{2}\Gamma_{22} \end{pmatrix} \begin{pmatrix} B_{s}^{0} \\ \overline{B}_{s}^{0} \end{pmatrix}$$

$$\Delta m = m_{H} - m_{L}$$

$$\Delta \Gamma = \Gamma_{H} - \Gamma_{L}$$

$$\left|\frac{q}{p}\right| = 1 \quad \text{or} \quad \frac{q}{p} = e^{-i\phi_{s}}$$

$$H = \begin{pmatrix} m - \frac{i}{2}\Gamma & -e^{+i\phi_{s}} \frac{\Delta m - i\Delta\Gamma/2}{2} \\ -e^{-i\phi_{s}} \frac{\Delta m - i\Delta\Gamma/2}{2} & m - \frac{i}{2}\Gamma \end{pmatrix}$$

(if CPV in mixing is ignored)

	B _d	B _s	
∆m=m _H -m _L	0.5 ps⁻¹	17.8 ps ⁻¹	
$\Delta \Gamma = \Gamma_{H} - \Gamma_{L}$	О(0.01)·Г _d	О(0.1)·Г _s	In SM
$\phi_{s,d}$	$arg(V_{tb}V_{td}^*) = 2\beta$	$arg(V_{tb}V_{ts}^*) = 2\Delta\gamma$	

Measurement of B_s Mixing

 B_s oscillates about 26 times until it decays: need excellent proper time resolution to resolve the mixing. LHCb: 44 fs

B_s mixing has been observed at Tevatro

Observation of B_s mixing is basis for time dependent CP asymmetry measurements.

$\Delta \Gamma_{s}$ and $\mathbf{B}_{s} \rightarrow \mathbf{J}/\psi \phi$

$$\overline{s} \xrightarrow{s} \phi \qquad J^{PC} = 1^{--} \qquad Final state is mixtur$$

Final state is mixture of CP even/odd.

Interference between Mixing and Decay

Simultaneous determination of $\Delta\Gamma$ and ϕ_s Measurement possible as tagged and untagged analysis!

Expected Constraints for ϕ_s

Expect 130k recon. $B_s \rightarrow J/\psi \phi$ events/yr ϵ_{tot} =1.6%, B/S<0.1, σ_{ct} =37 fs, ϵD^2 =5.5%

Measurement of γ with B \rightarrow DK decays

Measurements of γ with B_s decays

Feynman tree diagrams

Interference between direct decay and decay after oscillation

LHCb Measurement of CKM Angle γ

γ from B \rightarrow DK at LHCb (10 fb⁻¹)

Two possible scenarios

CKM Metrology and LHCb

Summer 2006

LHCb at L=10fb⁻¹

Rare B Decays $B_{s,d} \rightarrow \mu \mu$

SM Branching ratio: $BR(B_s \rightarrow \mu^+ \mu^-) = (3.5 \pm 0.9) \times 10^{-9}$ $BR(B_d \rightarrow \mu^+ \mu^-) = (1.0 \pm 0.5) \times 10^{-10}$ Limits from CDF+D0: BR ~ 1×10⁻⁷

Large contribution from SUSY

LHCb Mass resolution $\Delta m_{\mu\mu} \approx 18 \text{ MeV}$

 $\begin{array}{ll} 2 \mbox{ fb}^{-1} \Rightarrow & 3\sigma \mbox{ evidence of SM signal} \\ 10 \mbox{ fb}^{-1} \Rightarrow & {}^{>}5\sigma \mbox{ observation of SM signal} \end{array}$

Rare $B^0 \rightarrow K^{*0}\mu^+\mu^-$ decays

LHCb - Conclusion

LHCb is a dedicated experiment to exploit the enormous B production rate at LHC: excellent vertexing and PID, good tracking, flexible trigger.

Precision measurement of loop-suppressed B decays at LHC opens a window to look for New Physics.

This approach is complementary to the direct searches of New Physics at ATLAS and CMS.

	Channel	Yield	B/S	Precision	
	$B_s \rightarrow D_s^{-+} K^{+-}$	5.4k	< 1.0	σ(γ) ~ 14°	
	$B_d \rightarrow \pi^+ \pi^-$	36k	0.46	-(11) - 49	
	${\sf B}_{s} \to {\sf K}^{+} {\sf K}^{-}$	36k	< 0.06	ο(γ) ~ 4°	
γ	$B_d \rightarrow D^0 (K\pi, KK) K^{*0}$	3.4 k, 0.5 k, 0.6 k	<0.3, <1.7, < 1.4	σ(γ) ~ 7º - 10º	
	$B^- \rightarrow D^0 (K^- \pi^+, K^+ \pi^-) K^-$	28k, 0.5k	0.6, 4.3	-(v) = 50 - 150	
	$B^- \rightarrow D^0 (K^+ K^-, \pi^+ \pi^-) K^-$	4.3 k	2.0	σ(γ) ~ 5° - 15°	
	$B^- \rightarrow D^0 \left(K_S \pi^+ \pi^- \right) K^-$	1.5 - 5k	< 0.7	σ(γ) ~ 8° - 16°	
α	$B_d \rightarrow \pi^+ \pi^- \pi^0$	14k	< 0.8	σ(α) ~ 10°	
	$B \rightarrow \rho^+ \rho^0, \rho^+ \rho^-, \rho^0 \rho^0$	9k, 2k, 1k	1, <5, < 4		
β	$B_d \to J/\psi(\mu\mu)K_S$	216k	0.8	σ(sin2β) ~ 0.022	
∆ms	$B_s \rightarrow D_s^- \pi^+$	80k	0.3	$\sigma(\Delta m_s) \sim 0.01 \text{ ps}^{-1}$	
фs	$B_{\mathtt{s}} \to J/\psi(\mu\mu) \varphi$	131k	0.12	$\sigma(\phi_{s}) \sim 1.3^{o}$	
Rare decays	$B_{s} \rightarrow \mu^{+} \mu^{-}$	17	< 5.7		
	$B_{d} \to K^{\star 0} \mu^{+} \mu^{-}$	7.7 k	0.4	$\sigma(C_7^{\text{eff}}\!/C_9^{\text{eff}})\sim\!\!0.13$	
	$B_d \rightarrow K^{*0} \gamma$	35k	< 0.7	σ(A _{CP}) ~0.01	
	$B_s \rightarrow \phi \gamma$	9.3 k	< 2.4		
charm	$D^{*+} \rightarrow D^0 (K^- \pi^+) \pi^+$	100 M			