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1 Introduction to OOAD

1.1 Overview and Schedule
1.2 What is OOAD?
1.3 Why OOAD?
1.4 Complex Systems
1.5 The Object Model
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1.1 Schedule

1) Introduction Monday

2) UML for OOAD Tuesday

3) OO Design: Classes Wednesday

4) OO Design: Packages Thursday

5) OO Analysis Friday
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1.1 Literature
Not an exhaustive list, but what the 
lectures are based on

Object-Oriented Analysis and Design with Applications, G. Booch,
2nd Ed., Benjamin/Cummings, 1994*

Object Solutions, G. Booch, Addison-Wesley, 1995
The Unified Modeling Language User Guide, G. Booch, 
J. Rumbaugh, I. Jacobson, Addison-Wesley, 1999
Agile Software Development: Principles, Patterns and Practices, 
R. C. Martin, Prentice Hall, 2003&

* 3rd Ed. announced for June 2004
& partially available as articles at www.oma.com
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1.1 Expectations

� Who are we?

� What do you expect from this class?

� Have you attended other courses/classes?

� What is your programming experience?

� Do you have a current project?
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1.2 What is OO?

� A method to design and build large 
programs with a long lifetime

� e.g. O(10k) loc C++ with O(a) lifetime

� Blueprints of systems before coding

� Iterative development process

� Maintainance and modifications

� Control of dependencies

� Separation into components
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1.2 Just another paradigm?

� Object-orientation is closer to the way 
problems appear in life (physical and non-
physical)

� These problems generelly don't come 
formulated in a procedural manner

� We think in terms of "objects" or concepts 
and relations between those concepts

� Modelling is simplified with OO because 
we have objects and relations
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1.2 SA/SD and OO
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1.2 Common Prejudices

� OO was used earlier without OO languages

� Doubtful. A good procedural program may deal 
with some of the OO issues but not with all

� OO without language support is at least 
awkward and dangerous if not quite 
irresponsible

� It is just common sense and good practices

� It is much more than that, it provides formal 
methods, techniques and tools to control 
analysis, design, development and 
maintainance
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1.3 Why OOAD?

� Software complexity rises exponentially:

� 80's O(10-100) kloc (e.g. JADE)

� 90's O(100) kloc (e.g. OPAL)

� 00's O(1) Mloc (e.g. BaBar, ATLAS)

� Need for tools to deal with complexity  
OOAD provides these tools
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1.3 Software in HEP 
Experiments

O(100) kloc, 2000 routines,
14 packages

500 kloc, 6900 routines, 54 packages

JADE OPAL
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1.3 Software in HEP 
Experiments

O(1) Mloc, O(10k) classes,
O(1k) packages

ATLASBaBar

O(1) Mloc, O(1k) classes,
O(100) packages
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1.3 Why OOAD in Physics?

� Physics is about modelling the world:

� Objects interact according to laws of nature: 
particles/fields, atoms, molecules and 
electrons, liquids, solid states, ...

� OOAD creates models by defining objects 
and their rules of interaction

� This way of thinking about software is well 
adapted and quite natural to physicists

� OOAD is a software engineering practice

� manage large projects professionally
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1.4 Complex Systems

� For our purpose complex systems (Booch):

� have many states, i.e. large "phase space",

� are hard to comprehend in total

� hard to predict

� Examples:

� ant colony, an ant

� computer

� weather

� a car
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1.4 Complex Systems

� Attributes of complex systems

� hierarchical

� components

� primitive components

� few kinds of subsystems in many different 
combinations

� evolved from a simpler system
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1.4 Complex Systems: 
Hierarchical

� Composed of interrelated subsystems

� subsystems consist of subsystems too

� until elementary component
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1.4 Complex Systems: 
Components

� Links (dependencies) within a component 
are stronger than between components

� inner workings of components separated from 
interaction between components

� service/repair/replace components
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1.4 Complex Systems: Primitive 
Components

� There are primitive components

� but defintion of primitive may vary

� Nuts, bolts, individual parts?

� replaceable components?

Instrument panel
or srews, bulbs and parts?
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1.4 Complex Systems: Few kinds 
of subsystems in many 

combinations

� There are common patterns

� Nuts, bolts, screws interchangeable

� cables, bulbs, plugs

� toothweels, belts, chains

� hoses, clamps
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1.4 Complex Systems: Evolved 
from a simpler system

� Complex system designed from scratch 
rarely works

� Add new funtionality/improvements in 
small steps 
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1.4 Complex Systems: Analysis

� Have we seen it before?

� Have we seen its components before?

� Decompose by functionality ("part of")

� Engine, brakes, wheels, lighting

� Decompose by component classes ("is a")

� The BX A8A Turbodiesel is an engine

� Lockheed disk brake is a brake

� 175/65R14 tire+rim is a wheel
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1.4 Complex Systems: Two 
orthogonal views

� The Object Structure

� "part of" hierarchy, functions

� concentrate on actual components

� concrete

� The Class Structure

� "is a" hierarchy

� concentrate on kinds of components

� abstract
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1.4 Complex Systems: Summary

� Have "large phase space"

� Hard to predict behaviour

� Five properties:

� hierarchies, components, primitives, not too 
many kinds of components, evolved

� Two orthogonal views for analysis:

� Object Structure ("part of")

� Class Structure ("is a")
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1.5 The Object Model

� Four essential properties

� Abstraction

� Encapsulation

� Modularity

� Hierarchy

� Two more useful properties

� Type

� Persistence

(Booch)
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1.5 Abstraction
The characteristics of an object which make it

unique and reflect an important concept
(following
Booch)
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1.5 Encapsulation
Separates interface of an abstraction 

from its implementation

Abstraction: car
Interface: steering, pedals, 

controls
Implementation: 

know, quite different
between different
makes or models
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1.5 Modularity
Property of a system decomposed into cohesive

and loosely coupled modules

Cohesive: group logically related
abstractions

Loosely coupled: minimise dependencies
between modules
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1.5 Hierarchy
Hierarchy is a ranking or ordering of abstractions

PSA A8A
turbo diesel

engine
Turbo diesel

engine Diesel
engine

Internal combustion
engine

VW 1.9
TDI

Petrol
engine
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1.5 Type
Typing enforces object class such that objects

of different class may not be interchanged

Strong typing: operation upon an object must be defined,
can be checked at compile time

Weak typing: can perform operations on any object
Static binding: types fixed at compile time
Dynamic binding: types fixed at run time

C++, Java: strong + dynamic
Perl, Python: weak + dynamic
Fortran, C: strong + static (ignoring type casts)


