
1Introduction to OOAD Stefan Kluth

Object-Oriented Analysis
and Design

for Physics Programming

2Introduction to OOAD Stefan Kluth

1 Introduction to OOAD

1.1 Overview and Schedule
1.2 What is OOAD?
1.3 Why OOAD?
1.4 Complex Systems
1.5 The Object Model

3Introduction to OOAD Stefan Kluth

1.1 Schedule

1) Introduction Monday

2) UML for OOAD Tuesday

3) OO Design: Classes Wednesday

4) OO Design: Packages Thursday

5) OO Analysis Friday

4Introduction to OOAD Stefan Kluth

1.1 Literature
Not an exhaustive list, but what the
lectures are based on

Object-Oriented Analysis and Design with Applications, G. Booch,
2nd Ed., Benjamin/Cummings, 1994*

Object Solutions, G. Booch, Addison-Wesley, 1995
The Unified Modeling Language User Guide, G. Booch,
J. Rumbaugh, I. Jacobson, Addison-Wesley, 1999
Agile Software Development: Principles, Patterns and Practices,
R. C. Martin, Prentice Hall, 2003&

* 3rd Ed. announced for June 2004
& partially available as articles at www.oma.com

5Introduction to OOAD Stefan Kluth

1.1 Expectations

� Who are we?

� What do you expect from this class?

� Have you attended other courses/classes?

� What is your programming experience?

� Do you have a current project?

6Introduction to OOAD Stefan Kluth

1.2 What is OO?

� A method to design and build large
programs with a long lifetime

� e.g. O(10k) loc C++ with O(a) lifetime

� Blueprints of systems before coding

� Iterative development process

� Maintainance and modifications

� Control of dependencies

� Separation into components

7Introduction to OOAD Stefan Kluth

1.2 Just another paradigm?

� Object-orientation is closer to the way
problems appear in life (physical and non-
physical)

� These problems generelly don't come
formulated in a procedural manner

� We think in terms of "objects" or concepts
and relations between those concepts

� Modelling is simplified with OO because
we have objects and relations

8Introduction to OOAD Stefan Kluth

1.2 SA/SD and OO

Data

Function

Function

Function

Function

Function

Function

Function

Data

Function

Data

Top-down hierarchies of
function calls and dependencies

Bottom-up hierarchy of
dependencies

9Introduction to OOAD Stefan Kluth

1.2 Common Prejudices

� OO was used earlier without OO languages

� Doubtful. A good procedural program may deal
with some of the OO issues but not with all

� OO without language support is at least
awkward and dangerous if not quite
irresponsible

� It is just common sense and good practices

� It is much more than that, it provides formal
methods, techniques and tools to control
analysis, design, development and
maintainance

10Introduction to OOAD Stefan Kluth

1.3 Why OOAD?

� Software complexity rises exponentially:

� 80's O(10-100) kloc (e.g. JADE)

� 90's O(100) kloc (e.g. OPAL)

� 00's O(1) Mloc (e.g. BaBar, ATLAS)

� Need for tools to deal with complexity
OOAD provides these tools

11Introduction to OOAD Stefan Kluth

1.3 Software in HEP
Experiments

O(100) kloc, 2000 routines,
14 packages

500 kloc, 6900 routines, 54 packages

JADE OPAL

12Object-Oriented Programming in Physics Stefan Kluth GridKa School 29.09.03

1.3 Software in HEP
Experiments

O(1) Mloc, O(10k) classes,
O(1k) packages

ATLASBaBar

O(1) Mloc, O(1k) classes,
O(100) packages

13Introduction to OOAD Stefan Kluth

1.3 Why OOAD in Physics?

� Physics is about modelling the world:

� Objects interact according to laws of nature:
particles/fields, atoms, molecules and
electrons, liquids, solid states, ...

� OOAD creates models by defining objects
and their rules of interaction

� This way of thinking about software is well
adapted and quite natural to physicists

� OOAD is a software engineering practice

� manage large projects professionally

14Introduction to OOAD Stefan Kluth

1.4 Complex Systems

� For our purpose complex systems (Booch):

� have many states, i.e. large "phase space",

� are hard to comprehend in total

� hard to predict

� Examples:

� ant colony, an ant

� computer

� weather

� a car

15Introduction to OOAD Stefan Kluth

1.4 Complex Systems

� Attributes of complex systems

� hierarchical

� components

� primitive components

� few kinds of subsystems in many different
combinations

� evolved from a simpler system

16Introduction to OOAD Stefan Kluth

1.4 Complex Systems:
Hierarchical

� Composed of interrelated subsystems

� subsystems consist of subsystems too

� until elementary component

17Introduction to OOAD Stefan Kluth

1.4 Complex Systems:
Components

� Links (dependencies) within a component
are stronger than between components

� inner workings of components separated from
interaction between components

� service/repair/replace components

18Introduction to OOAD Stefan Kluth

1.4 Complex Systems: Primitive
Components

� There are primitive components

� but defintion of primitive may vary

� Nuts, bolts, individual parts?

� replaceable components?

Instrument panel
or srews, bulbs and parts?

19Introduction to OOAD Stefan Kluth

1.4 Complex Systems: Few kinds
of subsystems in many

combinations

� There are common patterns

� Nuts, bolts, screws interchangeable

� cables, bulbs, plugs

� toothweels, belts, chains

� hoses, clamps

20Introduction to OOAD Stefan Kluth

1.4 Complex Systems: Evolved
from a simpler system

� Complex system designed from scratch
rarely works

� Add new funtionality/improvements in
small steps

21Introduction to OOAD Stefan Kluth

1.4 Complex Systems: Analysis

� Have we seen it before?

� Have we seen its components before?

� Decompose by functionality ("part of")

� Engine, brakes, wheels, lighting

� Decompose by component classes ("is a")

� The BX A8A Turbodiesel is an engine

� Lockheed disk brake is a brake

� 175/65R14 tire+rim is a wheel

22Introduction to OOAD Stefan Kluth

1.4 Complex Systems: Two
orthogonal views

� The Object Structure

� "part of" hierarchy, functions

� concentrate on actual components

� concrete

� The Class Structure

� "is a" hierarchy

� concentrate on kinds of components

� abstract

23Introduction to OOAD Stefan Kluth

1.4 Complex Systems: Summary

� Have "large phase space"

� Hard to predict behaviour

� Five properties:

� hierarchies, components, primitives, not too
many kinds of components, evolved

� Two orthogonal views for analysis:

� Object Structure ("part of")

� Class Structure ("is a")

24Introduction to OOAD Stefan Kluth

1.5 The Object Model

� Four essential properties

� Abstraction

� Encapsulation

� Modularity

� Hierarchy

� Two more useful properties

� Type

� Persistence

(Booch)

25Introduction to OOAD Stefan Kluth

1.5 Abstraction
The characteristics of an object which make it

unique and reflect an important concept
(following
Booch)

Ja
ck

so
n

P
ol

lo
ck

, S
he

-W
ol

f,
19

43

26Introduction to OOAD Stefan Kluth

1.5 Encapsulation
Separates interface of an abstraction

from its implementation

Abstraction: car
Interface: steering, pedals,

controls
Implementation:

know, quite different
between different
makes or models

27Introduction to OOAD Stefan Kluth

1.5 Modularity
Property of a system decomposed into cohesive

and loosely coupled modules

Cohesive: group logically related
abstractions

Loosely coupled: minimise dependencies
between modules

28Introduction to OOAD Stefan Kluth

1.5 Hierarchy
Hierarchy is a ranking or ordering of abstractions

PSA A8A
turbo diesel

engine
Turbo diesel

engine Diesel
engine

Internal combustion
engine

VW 1.9
TDI

Petrol
engine

29Introduction to OOAD Stefan Kluth

1.5 Type
Typing enforces object class such that objects

of different class may not be interchanged

Strong typing: operation upon an object must be defined,
can be checked at compile time

Weak typing: can perform operations on any object
Static binding: types fixed at compile time
Dynamic binding: types fixed at run time

C++, Java: strong + dynamic
Perl, Python: weak + dynamic
Fortran, C: strong + static (ignoring type casts)

