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5.1 What is OOA?

� How to get understanding of what we want 
to build

� Many definitions try to distinguish 
analysis from design

� Discovery - Invention

� What? - How?

� Physical - Logical

� Analyst - Designer
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5.1 Discovery vs Invention

� Discovery 
(Analysis)

� Requirements

� Physical Objects

� Terminology

� Constraints

� User expectations

� System boundaries
� Invention (Design)

� Logical design

� Data model

� User interface

� Control structure

� Object definition
� Algorithms

� Interface to 
platform

Discovery: find the things which are fixed
Invention: find a possible solution
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5.1 What? vs How?

� What? (Analysis)

� Requirements

� Terminology

� System boundaries

� Constraints

� User expectations

� User interface

� Object definition

� How? (Design)

� Logical design

� Data model

� Control structure

� Algorithms

Not clear where to put e.g. User
interface or object definitions
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5.1 Logical vs Physical

� Logical (Analysis)

� Requirements

� Terminology

� Constraints

� Logical design

� Data model

� Control structure

� Algorithms

� Physical (Design)

� Platform API

� User interface

� Physical objects

� Hardware API
� Data storage API

Many "design" activities are
"analysis" in this scheme 
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5.1 Analyst vs Designer

� Analyst

� Gather 
requirements

� Design solutions

� Implement

� Test
� Designer

� Gather 
requirements

� Design solutions

� Implement
� Test

When the analyst does it its analysis
When the designer does it its design

Hierarchical
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5.2 Analysis Techniques

� Ad-hoc

� Noun lists

� CRC cards

� Use cases
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5.2 Ad-hoc Analysis

� Analysis on-the-fly while implementing

� Simple problems

� Objects, methods and behaviour obvious

� Probably the only analysis method in HEP?

� Works well with a good "analyst/designer"

� Works miserably when the problem is too 
difficult for the "analyst"

� Hard to do in collaboration
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5.2 Noun List Analysis

� Identify nouns, adjectives, verbs from e.g. 
requirements documents

� nouns �  objects?

� Verbs �  methods?

� adjectives �  object variations? �  abstractions?

� Fight blank page syndrome

� Depends on quality of existing 
documentation

� Too concrete, difficult in large projects
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5.2 Use Case Analysis

� Start from requirements

� Describe response of system to events

� Normal flow of action

� Error and exception handling

� Can implement tests to check use cases

� Can be quite formal

� UML diagrams

� Nested use cases
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5.2 Use Case Template

Use Case: The name
Actors: User or other systems which trigger an event
Summary: Abstract
Pre-conditions: What must be true before the use case can be

considered; possibly other use cases
Description: Interaction between actors and system, normal

and errors or exceptions
Post-conditions: What is true after the use case is done, i.e.

the state of the system
Related: List other related use cases
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5.2 Use Case in UML

<<uses>>: call another use case

<<extends>>: add to another use case

Notation similar to class inheritance, but meaning is different
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5.2 Use Case Summary

� Create use cases from requirements

� Response of system to events

� Normal and errors/exceptions

� Leads to tests

� Map use cases to tests

� Use cases are not designs

� That's how you manage to satisfy the tests 
derived from use cases
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5.2 CRC cards

� CRC = Class Responsibilities Collaborators

� Aids brainstorming to find classes/objects

� Index cards note in pencil

� Front: class name, responsibilities

� Back: collaborators, variables, techniques

� Group discussion

� Find or move responsibilities, 
find/rename/split classes, identify 
collaborators and techniques
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5.2 CRC Cards

� What do we get? Better understanding of

� classes and collaboration

� class interfaces

� message flow

� implementation ideas

� common view of project in the group

� Results will need verification and 
reworking

� Code and tests
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5.3 Booch's Criteria for Quality 
Classes

� When is an class/object well designed?

� Booch says look for

� Coupling

� Cohesion

� Sufficiency

� Completeness

� Primitiveness
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5.3 Class Coupling

� "Strength" of associations between classes

� strong coupling  individual classes hard to 
understand, correct or change

� tension with inheritance which couples classes

� tension with complexity of a class

� Relation with other principles

� couplings within or across packages different
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5.3 Class Cohesion

� Connections between elements of a class

� elements, i.e. class methods, work together to 
provide well-defined behaviour

� no unrelated elements or "coincidental 
cohesion"

� Examples:

� ThreeVector and transformations (rotation, 
boost, translation) are separate classes

� data handling and algorithms in Athena 
separate
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5.3 Class Sufficiency

� Class provides enough characteristics of an 
abstraction to allow meaningful and 
efficient interaction

� Its about modelling some concept via a class

� Example

� Particle: has many aspects

	 4vector, charge, spin, other quantum numbers
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5.3 Class Completeness


 Interface of class captures all meaningful 
characteristics of an abstraction

� Sufficiency �  minimal useful interface

� Now want to cover all aspects of a concept

� Class should be widely useable


 Example

� Particle again:

� relations with other particles, combinations

� vertices, production, decay, operations
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5.3 Class Primitiveness

� Primitive operations efficiently 
implemented only with access to 
representation of abstraction, i.e. the class

� Should only provide primitive operations

� keeps the interface clean+tidy

� Example

� ThreeVector provides operations +, -, * etc.

� but no operations with collections, these are 
left to the users/clients to implement
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5.3 In Different Words ...

� Reuseablity

� behaviour useful in many contexts?

� Complexity

� difficulty of implementation?

� Applicability

� is behaviour relevant to the class it is part of?

� Implementation Knowledge

� implementation depends on class details?
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5.3 Object and Class Naming


 Objects 
  proper noun phrases:

�  vector, theVector, dstarVector


 Classes 
  common noun phrases:

� ThreeVector, Particle, LorentzRotation


 Modifier operations 
  active verbs

� draw, add, rotate, setXX


 Selector operations 
  verbs imply query

� getXX, isOpen
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5.4 Iterative OO Analysis and 
Design


 The development process 
  project 
management

� Ad-hoc

� Milestones

� Iterative


 There is always a development process

� If not explicit probably ad-hoc random walk

� OOAD leads to an explicit development 
process
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5.4 Ad-hoc Project Management

� Small projects

� Little requirements gathering

� Quick coding

� Frequent problems, but fixed quickly too

� Doesn't scale well to larger projects

� Need coordination between several (many) 
people

� Need realistic schedules

� Need reliable estimators of project progress
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5.4 Milestones

� Milestones (delivery dates) for

� Requirements documents

� Design documents

� Implementation

� Documentation

� Problematic

� Hard to predict progress to completion

� Earlier documentation becomes obsolete
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5.4 Iterative Project 
Management


 1 Analysis and design to split project into 
functional components and slices


 2 For each component determine what is 
needed first (next) 
  the slice

� 3 Develop slices until it works

� Repeat 1 to 3

� Can evaluate effort needed in each cycle

� Can predict time to completion more reliably

� Can react when problems appear
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5.4 The Booch Micro Cycle

Identify classes
and objects

Identify classes
and objects semantics

Identify classes and
objects relationships

Specify classes and
objects interfaces

and implementation
�Static model

�Method names

�Associations

�Dynamic model

�Message flow

�Refine relationships

�Find abstractions

�Create headers

�Write code

�Test
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5.4 The Booch Macro Process

Conzeptualisation
Establish requirements

Analysis
Model desired behaviour

Design
Create an architecture

Evolution
Evolve the implementation

Maintainance
Post-delivery evolution

and enhancements
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5.4 Iterative OOAD Summary

� The OO development process is iterative

� Anlysis, design, coding, test in small steps

� More consistency between analysis, design 
and product

� Can react early when problems appear

� Feedback from coding to analysis and 
design

� spot and correct errors

� don't be afraid to reconsider analysis and 
design decisions
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5.5 Agile/XP Process

� An overview based on R.C. Martins book

� What is it? Can we profit from it?

� Observation of process inflation vicious 
circle

� Need to break this circle

� Agile or XP

� Emphasis on creative processes, coding and 
the final product, lightweight on formal 
steps



32OO Analysis Stefan Kluth

5.5 Agile Values

� Individuals & interactions over processes & 
tools 

� Real people create the code

� Working software over total documentation

� No document unless immediate and real need

� Customer collaboration over contract 
negotiation

� Frequent feedback based on experience

� Responding to change over following a plan

� Controlled present, fuzzy future
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5.5 Agile Principles

� Early and continous delivery of working 
systems

� Welcome changing requirements

� Stakeholders and developers collaborate 
daily

� Users, collaboration managment, developers

� Projects around motivated individuals

� Support and trust them

� Information in team flows through talking
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5.5 Agile Principles

� Progress measured by working software

� Sustainable development

� Long-distance run, not a sprint

� Attention to technical detail and excellence

� High quality code

� Simplicity: no unneccessary work

� Self-organising teams

� Solve problems together
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5.5 Agile Practices

� Customer team member

� User/usage stories

� Short cycles

� 2 weeks iteration, release plan covering 6 
iterations

� Acceptance tests provided by customers

� Need test environment to allow easy tests

� Pair programming of production code

� Test-driven development: test-first 
programming
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5.5 Agile Practices

� Collective code ownership

� Frequent integration

� No overtime, mandatory 40 h week

� Open workspaces

� Planning game with every iteration

� Simple design

� Most simple solution, complexity only when 
economical

� Refactoring frequently

� Adiabatic code changes towards better design
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5.5 Agile Summary

� Contains a lot of reasonable suggestions

� Some of them may be applicable to us

� Problems

� Clearly identified teams?

� Clearly identified customers/users/ 
stakeholders?

� Emphasis on code and working product

� Essential documentation still produced

� Clean+tidy code, not quick+dirty hacking


