
1OO Analysis Stefan Kluth

5 Object Oriented Analysis

5.1 What is OOA?
5.2 Analysis Techniques
5.3 Booch's Criteria for Quality Classes
5.4 Project Management and Iterative OOAD

2OO Analysis Stefan Kluth

5.1 What is OOA?

� How to get understanding of what we want
to build

� Many definitions try to distinguish
analysis from design

� Discovery - Invention

� What? - How?

� Physical - Logical

� Analyst - Designer

3OO Analysis Stefan Kluth

5.1 Discovery vs Invention

� Discovery
(Analysis)

� Requirements

� Physical Objects

� Terminology

� Constraints

� User expectations

� System boundaries
� Invention (Design)

� Logical design

� Data model

� User interface

� Control structure

� Object definition
� Algorithms

� Interface to
platform

Discovery: find the things which are fixed
Invention: find a possible solution

4OO Analysis Stefan Kluth

5.1 What? vs How?

� What? (Analysis)

� Requirements

� Terminology

� System boundaries

� Constraints

� User expectations

� User interface

� Object definition

� How? (Design)

� Logical design

� Data model

� Control structure

� Algorithms

Not clear where to put e.g. User
interface or object definitions

5OO Analysis Stefan Kluth

5.1 Logical vs Physical

� Logical (Analysis)

� Requirements

� Terminology

� Constraints

� Logical design

� Data model

� Control structure

� Algorithms

� Physical (Design)

� Platform API

� User interface

� Physical objects

� Hardware API
� Data storage API

Many "design" activities are
"analysis" in this scheme

6OO Analysis Stefan Kluth

5.1 Analyst vs Designer

� Analyst

� Gather
requirements

� Design solutions

� Implement

� Test
� Designer

� Gather
requirements

� Design solutions

� Implement
� Test

When the analyst does it its analysis
When the designer does it its design

Hierarchical

7OO Analysis Stefan Kluth

5.2 Analysis Techniques

� Ad-hoc

� Noun lists

� CRC cards

� Use cases

8OO Analysis Stefan Kluth

5.2 Ad-hoc Analysis

� Analysis on-the-fly while implementing

� Simple problems

� Objects, methods and behaviour obvious

� Probably the only analysis method in HEP?

� Works well with a good "analyst/designer"

� Works miserably when the problem is too
difficult for the "analyst"

� Hard to do in collaboration

9OO Analysis Stefan Kluth

5.2 Noun List Analysis

� Identify nouns, adjectives, verbs from e.g.
requirements documents

� nouns � objects?

� Verbs � methods?

� adjectives � object variations? � abstractions?

� Fight blank page syndrome

� Depends on quality of existing
documentation

� Too concrete, difficult in large projects

10OO Analysis Stefan Kluth

5.2 Use Case Analysis

� Start from requirements

� Describe response of system to events

� Normal flow of action

� Error and exception handling

� Can implement tests to check use cases

� Can be quite formal

� UML diagrams

� Nested use cases

11OO Analysis Stefan Kluth

5.2 Use Case Template

Use Case: The name
Actors: User or other systems which trigger an event
Summary: Abstract
Pre-conditions: What must be true before the use case can be

considered; possibly other use cases
Description: Interaction between actors and system, normal

and errors or exceptions
Post-conditions: What is true after the use case is done, i.e.

the state of the system
Related: List other related use cases

12OO Analysis Stefan Kluth

5.2 Use Case in UML

<<uses>>: call another use case

<<extends>>: add to another use case

Notation similar to class inheritance, but meaning is different

13OO Analysis Stefan Kluth

5.2 Use Case Summary

� Create use cases from requirements

� Response of system to events

� Normal and errors/exceptions

� Leads to tests

� Map use cases to tests

� Use cases are not designs

� That's how you manage to satisfy the tests
derived from use cases

14OO Analysis Stefan Kluth

5.2 CRC cards

� CRC = Class Responsibilities Collaborators

� Aids brainstorming to find classes/objects

� Index cards note in pencil

� Front: class name, responsibilities

� Back: collaborators, variables, techniques

� Group discussion

� Find or move responsibilities,
find/rename/split classes, identify
collaborators and techniques

15OO Analysis Stefan Kluth

5.2 CRC Cards

� What do we get? Better understanding of

� classes and collaboration

� class interfaces

� message flow

� implementation ideas

� common view of project in the group

� Results will need verification and
reworking

� Code and tests

16OO Analysis Stefan Kluth

5.3 Booch's Criteria for Quality
Classes

� When is an class/object well designed?

� Booch says look for

� Coupling

� Cohesion

� Sufficiency

� Completeness

� Primitiveness

17OO Analysis Stefan Kluth

5.3 Class Coupling

� "Strength" of associations between classes

� strong coupling individual classes hard to
understand, correct or change

� tension with inheritance which couples classes

� tension with complexity of a class

� Relation with other principles

� couplings within or across packages different

18OO Analysis Stefan Kluth

5.3 Class Cohesion

� Connections between elements of a class

� elements, i.e. class methods, work together to
provide well-defined behaviour

� no unrelated elements or "coincidental
cohesion"

� Examples:

� ThreeVector and transformations (rotation,
boost, translation) are separate classes

� data handling and algorithms in Athena
separate

19OO Analysis Stefan Kluth

5.3 Class Sufficiency

� Class provides enough characteristics of an
abstraction to allow meaningful and
efficient interaction

� Its about modelling some concept via a class

� Example

� Particle: has many aspects

	 4vector, charge, spin, other quantum numbers

20OO Analysis Stefan Kluth

5.3 Class Completeness

 Interface of class captures all meaningful
characteristics of an abstraction

� Sufficiency � minimal useful interface

� Now want to cover all aspects of a concept

� Class should be widely useable

 Example

� Particle again:

� relations with other particles, combinations

� vertices, production, decay, operations

21OO Analysis Stefan Kluth

5.3 Class Primitiveness

� Primitive operations efficiently
implemented only with access to
representation of abstraction, i.e. the class

� Should only provide primitive operations

� keeps the interface clean+tidy

� Example

� ThreeVector provides operations +, -, * etc.

� but no operations with collections, these are
left to the users/clients to implement

22OO Analysis Stefan Kluth

5.3 In Different Words ...

� Reuseablity

� behaviour useful in many contexts?

� Complexity

� difficulty of implementation?

� Applicability

� is behaviour relevant to the class it is part of?

� Implementation Knowledge

� implementation depends on class details?

23OO Analysis Stefan Kluth

5.3 Object and Class Naming

 Objects
 proper noun phrases:

� vector, theVector, dstarVector

 Classes
 common noun phrases:

� ThreeVector, Particle, LorentzRotation

 Modifier operations
 active verbs

� draw, add, rotate, setXX

 Selector operations
 verbs imply query

� getXX, isOpen

24OO Analysis Stefan Kluth

5.4 Iterative OO Analysis and
Design

 The development process
 project
management

� Ad-hoc

� Milestones

� Iterative

 There is always a development process

� If not explicit probably ad-hoc random walk

� OOAD leads to an explicit development
process

25OO Analysis Stefan Kluth

5.4 Ad-hoc Project Management

� Small projects

� Little requirements gathering

� Quick coding

� Frequent problems, but fixed quickly too

� Doesn't scale well to larger projects

� Need coordination between several (many)
people

� Need realistic schedules

� Need reliable estimators of project progress

26OO Analysis Stefan Kluth

5.4 Milestones

� Milestones (delivery dates) for

� Requirements documents

� Design documents

� Implementation

� Documentation

� Problematic

� Hard to predict progress to completion

� Earlier documentation becomes obsolete

27OO Analysis Stefan Kluth

5.4 Iterative Project
Management

 1 Analysis and design to split project into
functional components and slices

 2 For each component determine what is
needed first (next)
 the slice

� 3 Develop slices until it works

� Repeat 1 to 3

� Can evaluate effort needed in each cycle

� Can predict time to completion more reliably

� Can react when problems appear

28OO Analysis Stefan Kluth

5.4 The Booch Micro Cycle

Identify classes
and objects

Identify classes
and objects semantics

Identify classes and
objects relationships

Specify classes and
objects interfaces

and implementation
�Static model

�Method names

�Associations

�Dynamic model

�Message flow

�Refine relationships

�Find abstractions

�Create headers

�Write code

�Test

29OO Analysis Stefan Kluth

5.4 The Booch Macro Process

Conzeptualisation
Establish requirements

Analysis
Model desired behaviour

Design
Create an architecture

Evolution
Evolve the implementation

Maintainance
Post-delivery evolution

and enhancements

30OO Analysis Stefan Kluth

5.4 Iterative OOAD Summary

� The OO development process is iterative

� Anlysis, design, coding, test in small steps

� More consistency between analysis, design
and product

� Can react early when problems appear

� Feedback from coding to analysis and
design

� spot and correct errors

� don't be afraid to reconsider analysis and
design decisions

31OO Analysis Stefan Kluth

5.5 Agile/XP Process

� An overview based on R.C. Martins book

� What is it? Can we profit from it?

� Observation of process inflation vicious
circle

� Need to break this circle

� Agile or XP

� Emphasis on creative processes, coding and
the final product, lightweight on formal
steps

32OO Analysis Stefan Kluth

5.5 Agile Values

� Individuals & interactions over processes &
tools

� Real people create the code

� Working software over total documentation

� No document unless immediate and real need

� Customer collaboration over contract
negotiation

� Frequent feedback based on experience

� Responding to change over following a plan

� Controlled present, fuzzy future

33OO Analysis Stefan Kluth

5.5 Agile Principles

� Early and continous delivery of working
systems

� Welcome changing requirements

� Stakeholders and developers collaborate
daily

� Users, collaboration managment, developers

� Projects around motivated individuals

� Support and trust them

� Information in team flows through talking

34OO Analysis Stefan Kluth

5.5 Agile Principles

� Progress measured by working software

� Sustainable development

� Long-distance run, not a sprint

� Attention to technical detail and excellence

� High quality code

� Simplicity: no unneccessary work

� Self-organising teams

� Solve problems together

35OO Analysis Stefan Kluth

5.5 Agile Practices

� Customer team member

� User/usage stories

� Short cycles

� 2 weeks iteration, release plan covering 6
iterations

� Acceptance tests provided by customers

� Need test environment to allow easy tests

� Pair programming of production code

� Test-driven development: test-first
programming

36OO Analysis Stefan Kluth

5.5 Agile Practices

� Collective code ownership

� Frequent integration

� No overtime, mandatory 40 h week

� Open workspaces

� Planning game with every iteration

� Simple design

� Most simple solution, complexity only when
economical

� Refactoring frequently

� Adiabatic code changes towards better design

37OO Analysis Stefan Kluth

5.5 Agile Summary

� Contains a lot of reasonable suggestions

� Some of them may be applicable to us

� Problems

� Clearly identified teams?

� Clearly identified customers/users/
stakeholders?

� Emphasis on code and working product

� Essential documentation still produced

� Clean+tidy code, not quick+dirty hacking

