5 Object Oriented Analysis

5.1 What is OOA?

5.2 Analysis Techniques

5.3 Booch's Criteria for Quality Classes

5.4 Project Management and Iterative OOAD

OO Analysis Stefan Kluth

5.1 What 1s OOA?

* How to get understanding of what we want
to build

* Many definitions try to distinguish
analysis from design

— Discovery - Invention
— What? - How?

- Physical - Logical

- Analyst - Designer

OO Analysis Stefan Kluth

5.1 Discovery vs Invention

* Discovery * Invention (Design)

(Analysis) — Logical design

- Requirements - Data model

— Physical Objects — User interface

- Terminology — Control structure
- Constraints - Object definition

- User expectations - Algorithms

- System boundaries — Interface to

platform

Discovery: find the things which are fixed
Invention: find a possible solution

OO Analysis Stefan Kluth

5.1 What? vs How?

* What? (Analysis) * How? (Design)

- Requirements - Logical design

— Terminology - Data model

- System boundaries — Control structure
— Constraints - Algorithms

- User expectations

- User interface Not clear where to put e.g. User
- Object definition interface or object definitions

OO Analysis Stefan Kluth 4

5.1 Logical vs Physical

* Logical (Analysis) ® Physical (Design)

- Requirements - Platform API

- Terminology - User interface

— Constraints - Physical objects
- Logical design - Hardware API

- Data model - Data storage API

— Control structure Many "design” activities are

- Algorithms "analysis" in this scheme

OO Analysis Stefan Kluth

5.1 Analyst vs Designer

* Analyst * Designer
- Gather - Gather
requirements requirements
- Design solutions - Design solutions
- Implement - Implement
- Test - Test

When the analyst does it its analysis
When the designer does it its design
Hierarchical

OO Analysis Stefan Kluth

5.2 Analysis Techniques

* Ad-hoc
* Noun lists

* CRC cards

* Use cases

OO Analysis Stefan Kluth

5.2 Ad-hoc Analysis

* Analysis on-the-fly while implementing
- Simple problems

— Objects, methods and behaviour obvious

* Probably the only analysis method in HEP?
* Works well with a good "analyst/designer”

* Works miserably when the problem is too
difficult for the "analyst”

* Hard to do in collaboration

OO Analysis Stefan Kluth

5.2 Noun List Analysis

* Identify nouns, adjectives, verbs from e.g.
requirements documents

- nouns - objects?
- Verbs = methods?

- adjectives = object variations? - abstractions?
* Fight blank page syndrome

* Depends on quality of existing
documentation

* Too concrete, difficult in large projects

OO Analysis Stefan Kluth

5.2 Use Case Analysis

* Start from requirements

* Describe response of system to events

— Normal flow of action

— Error and exception handling
* Can implement tests to check use cases

* Can be quite formal
- UML diagrams

— Nested use cases

OO Analysis Stefan Kluth

10

5.2 Use Case Template

Use Case: The name
Actors: User or other systems which trigger an event
Summary: Abstract

Pre-conditions: What must be true before the use case can be
considered; possibly other use cases

Description: Interaction between actors and system, normal
and errors or exceptions

Post-conditions: What is true after the use case is done, 1.e.
the state of the system

Related: List other related use cases

OO Analysis Stefan Kluth

11

5.2 Use Case in UML

<<uses>>: call another use case

initiates /
verify password
«KUuses»

User Xlogin)

«extends»

controls \

<<extends>>: add to another use case

SysAdmin

Notation similar to class inheritance, but meaning is different

OO Analysis Stefan Kluth 12

5.2 Use Case Summary

* Create use cases from requirements

- Response of system to events

- Normal and errors/exceptions
* Leads to tests

— Map use cases to tests
* Use cases are not designs

- That's how you manage to satisfy the tests
derived from use cases

OO Analysis Stefan Kluth

13

5.2 CRC cards

* CRC = Class Responsibilities Collaborators
* Aids brainstorming to find classes/objects

* Index cards note in pencil

- Front: class name, responsibilities

- Back: collaborators, variables, techniques
* Group discussion

- Find or move responsibilities,
find/rename/split classes, identify
collaborators and techniques

OO Analysis Stefan Kluth

14

5.2 CRC Cards

* What do we get? Better understanding of

- classes and collaboration
— class interfaces

- message flow

- implementation ideas

- common view of project in the group

* Results will need verification and
reworking

— Code and tests

OO Analysis Stefan Kluth

5.3 Booch's Criteria for Quality
Classes

* When is an class/object well designed?

* Booch says look for
- Coupling
— Cohesion
- Sufficiency
- Completeness

— Primitiveness

OO Analysis Stefan Kluth

16

5.3 Class Coupling

* "Strength" of associations between classes

- strong coupling = individual classes hard to
understand, correct or change

- tension with inheritance which couples classes

- tension with complexity of a class

* Relation with other principles

- couplings within or across packages different

OO Analysis Stefan Kluth

17

5.3 Class Cohesion

* Connections between elements of a class

- elements, i.e. class methods, work together to
provide well-defined behaviour

— no unrelated elements or "coincidental
cohesion"

* Examples:

— ThreeVector and transformations (rotation,
boost, translation) are separate classes

- data handling and algorithms in Athena
separate

OO Analysis Stefan Kluth

18

5.3 Class Sufficiency

* Class provides enough characteristics of an
abstraction to allow meaningful and
efficient interaction

- Its about modelling some concept via a class
* Example

- Particle: has many aspects

* 4vector, charge, spin, other quantum numbers

OO Analysis Stefan Kluth

19

5.3 Class Completeness

* Interface of class captures all meaningful
characteristics of an abstraction

- Sufficiency = minimal useful interface

- Now want to cover all aspects of a concept

— Class should be widely useable
* Example

- Particle again:

* relations with other particles, combinations

* vertices, production, decay, operations

OO Analysis Stefan Kluth

20

5.3 Class Primitiveness

* Primitive operations efficiently
implemented only with access to
representation of abstraction, i.e. the class

* Should only provide primitive operations
- keeps the interface clean+tidy
* Example

- ThreeVector provides operations +, -, * etc.

- but no operations with collections, these are
left to the users/clients to implement

OO Analysis Stefan Kluth

21

5.3 In Ditferent Words ...

* Reuseablity
— behaviour useful in many contexts?
* Complexity
- difficulty of implementation?
* Applicability
- is behaviour relevant to the class it is part of?
* Implementation Knowledge

- implementation depends on class details?

OO Analysis Stefan Kluth

22

5.3 Object and Class Naming

* Objects = proper noun phrases:
- vector, theVector, dstarVector
 Classes ® common noun phrases:
- ThreeVector, Particle, LorentzRotation
 Modifier operations = active verbs
- draw, add, rotate, setXX
e Selector operations = verbs imply query

- getXX, 1sOpen

OO Analysis Stefan Kluth

23

5.4 Iterative OO Analysis and

Design
* The development process = project
management
- Ad-hoc
- Milestones
- Iterative

* There is always a development process

- If not explicit probably ad-hoc random walk

- OOAD leads to an explicit development
process

OO Analysis Stefan Kluth

24

5.4 Ad-hoc Project Management

* Small projects

- Little requirements gathering

— Quick coding

- Frequent problems, but fixed quickly too
* Doesn't scale well to larger projects

- Need coordination between several (many)
people

— Need realistic schedules

- Need reliable estimators of project progress

OO Analysis Stefan Kluth

25

5.4 Milestones

* Milestones (delivery dates) for

- Requirements documents
- Design documents
- Implementation

- Documentation
* Problematic

- Hard to predict progress to completion

- Earlier documentation becomes obsolete

OO Analysis Stefan Kluth

26

5.4 Iterative Project

Management

* 1 Analysis and design to split project into
functional components and s/ices

* 2 For each component determine what is
needed first (next) = the slice

* 3 Develop slices until it works
* Repeat 1 to 3

* Can evaluate effort needed in each cycle

— Can predict time to completion more reliably

— Can react when problems appear

OO Analysis Stefan Kluth

27

5.4 The Booch Micro Cycle

*Static model
*Method names

Identify classes “/issociations
*Create headers Y

*Write code / and objects
*Test

Specify classes and

objects interfaces : :
, , and objects semantics
and implementation .
*Dynamic model

\ / *Message flow
Identify classes and

_ _ ~ objects relationships
*Refine relationships

e nd abstractions

OO Analysis Stefan Kluth 28

Identify classes

5.4 The Booch Macro Process

Conzeptualisation
Establish requirements

/ \

Maintainance :
Post-del; Lt Analysis
ost-delivery evolution Model desired behaviour
and enhaniements /
EVf)lutlon | De51gn.
Evolve the implementation Create an architecture

OO Analysis Stefan Kluth 29

5.4 Iterative OOAD Summary

* The OO development process is iterative

- Anlysis, design, coding, test in small steps

— More consistency between analysis, design
and product

— Can react early when problems appear

* Feedback from coding to analysis and
design
- spot and correct errors

- don't be afraid to reconsider analysis and
design decisions

OO Analysis Stefan Kluth

30

5.5 Agile/XP Process

* An overview based on R.C. Martins book
— What is it? Can we profit from it?

* Observation of process inflation vicious
circle

* Need to break this circle
- Agile or XP

* Emphasis on creative processes, coding and
the final product, lightweight on formal
steps

OO Analysis Stefan Kluth 31

5.5 Agile Values

* Individuals & interactions over processes &
tools

- Real people create the code
* Working software over total documentation
- No document unless immediate and real need

e Customer collaboration over contract
negotiation

- Frequent feedback based on experience
* Responding to change over following a plan

- Controlled present, fuzzy future

OO Analysis Stefan Kluth 32

5.5 Agile Principles

* KEarly and continous delivery of working
systems

* Welcome changing requirements

* Stakeholders and developers collaborate
daily

- Users, collaboration managment, developers
* Projects around motivated individuals
- Support and trust them

* Information in team flows through talking

OO Analysis Stefan Kluth 33

5.5 Agile Principles

* Progress measured by working software

* Sustainable development
- Long-distance run, not a sprint

* Attention to technical detail and excellence
- High quality code

* Simplicity: no unneccessary work

* Self-organising teams

- Solve problems together

OO Analysis Stefan Kluth

34

5.5 Agile Practices

* Customer team member
* User/usage stories

* Short cycles

- 2 weeks iteration, release plan covering 6
iterations

* Acceptance tests provided by customers
- Need test environment to allow easy tests

* Pair programming of production code

* Test-driven development: test-first
programming

OO Analysis Stefan Kluth

35

5.5 Agile Practices

* Collective code ownership

* Frequent integration

* No overtime, mandatory 40 h week
* Open workspaces

* Planning game with every iteration
* Simple design

— Most simple solution, complexity only when
economical

* Refactoring frequently

- Adiabatic code changes towards better design

OO Analysis Stefan Kluth

36

5.5 Agile Summary

* Contains a lot of reasonable suggestions
* Some of them may be applicable to us

* Problems

- Clearly identified teams?

- Clearly identified customers/users/
stakeholders?

* Emphasis on code and working product

- Essential documentation still produced

— Clean+tidy code, not quick+dirty hacking

OO Analysis Stefan Kluth

37

