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3.1 Dependency Management

� The parts of a project depend on each other

� components, programs, groups of classes, 
libraries

� Dependencies limit

� flexibility

� ease of maintainance

� reuse of components or parts

� Dependency management tries to control 
dependencies
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3.1 Dependency Management 
and Software

� Software systems are the most complex 
artificial systems

� There will be a lot of dependencies

� Software development was and is always 
concerned with dependencies

� OOAD gives us tools to manage 
dependencies

� trace dependencies e.g. in UML models

� use OO language to manipulate dependencies
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3.1 Problems with Software

� Rigid

� Fragile

� Not Reuseable

� High Viscosity

� Useless Complexity

� Repetition

� Opacity

These statements apply to an
average physicist/programmer
who develops and/or maintains
some software system.
Software gurus will always find
some solution in their code.
Do you want to rely on the guru?
What if that person retires, finds
a well-paid job or gets moved to
another project?
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3.1 Rigid Software

� Difficulties with changes

� Unforeseen sideeffects occur frequently

� Hard to estimate time to complete 
modifications

� "Roach Motel"

� Always in need of more effort

� Management reluctant to allow changes

� Official rigidity "don't touch a working system"

� Users forced to develop workarounds
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3.1 Fragile Software

� Small changes have large side effects

� New bugs appear regularily

� In the limit of P(bug|change) = 1 system is 
impossible to maintain

� It looks like control has been lost

� Users become critical

� Program looses credibility

� Developers loose credibility
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3.1 Not Reuseable

� You have a problem and find some piece of 
code which might solve it

� but it brings in a lot of other stuff

� it needs changes here and there

� Eventually you have two choices

� Take over maintainance of the branched code

� Roll your own

� You would like to include headers and link 
a library maintained by somebody else
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3.1 High Viscosity

� Viscosity of the design

� Hard to make changes properly, i.e. without 
breaking the design � make hacks instead

� Viscosity of the environment

� Slow and inefficient development environment

� Large incentive to keep changes localised even 
if they break designs

� Design changes are very difficult
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3.1 Useless Complexity

� Design/code contains useless elements

� Often for anticipated changes or extension

� May pay off

� Meanwhile makes design/code harder to 
understand

� Or leftovers of previous design changes?

� Time for a clean-up

� Tradeoff between complexity now and 
anticipated changes later
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3.1 Repetition

� Added functionality using cut-and-paste

� Then slight modifications for local purpose

� Find same structure repeatedly

� More code

� Harder to debug and modify

� There is an abstraction somewhere

� Refactor into function/method

� Create class(es) to do the job
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3.1 Opacity

� Design/code difficult to understand

� We have all suffered ...

� What is clear now may seem strange later

� Ok when its your code

� You suffer in silence

� Not acceptable in collaboration

� Need to code clearly, may need to rearrange

� Code reviews?
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3.1 Dependencies Managed

� Code is less rigid

� Code is less fragile

� Reuse is possible

� Viscosity is low
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3.1 Less Rigid Code

� Modules can be interchanged

� Changes are confined to a few modules

� Cost of changes can be estimated

� Changes can be planned and scheduled

� Management is possible
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3.1 Less Fragile Code

� Confined changes: P(bug|change) 1

� New bugs will most likely appear where 
the changes was made, i.e. localised

� Easier to fix (hopefully)

� Risk of changes can be estimated

� Credibility of code and developers 
conserved
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3.1 Reuseable Code

� A module can be used in a different context 
without changes

� Just use headers and link a library

� No need to compile and/or link lots of 
unrelated stuff
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3.1 Low Viscosity

� Design is easy to modify

� No quick hacks needed

� Proper design improvements will actually 
happen

� Large scale changes affecting many 
modules are possible

� Reasonable compile and link times for the 
whole system

� May depend on adequate hardware as well 
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3.1 Compile and Link Times

� Compile and link times are unproductive

� In a project with N modules compile and 
link time can grow like N2 (assuming every 
module is tested) when dependencies are 
not controlled

� Loss of productivity

� Long turnaround times  slow 
development

� Dependency management essential in large 
projects
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3.1 Code Changes

� Modules/packages and makefiles

� Verify that makefiles are reliable

� Changes to libraries (reuseable code)

� All affected users must relink (and retest)

� Shared libraries

� Need to distribute (and restart programs)

� Validation by users still needed

� Need recompile after interface changes
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3.2 The Copy Routine

	 Code rots

	 There are many reasons for code rot

	 We'll make a case study (R. Martin)

	 A routine which reads the keyboard and 
writes to a printer
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3.2 Copy Version 1

A simple solution
to a simple problem

ReadKeyboard and
WritePrinter are probably
reuseable
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3.2 Copy Version 2

Many users want to read
files too ...
But they don't want to
change their code ... can't 
put a flag in the call

Ok, so we use a global flag

Its backwards compatible
To read files you have to
set the flag first
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3.2 Copy Version 3

bool GFile;

void Copy(void) {
  char ch;
  while( 1 ) {
    if( GFile ) { ch= ReadFile(); }
    else { ch= ReadKeyboard(); }
    if( ch == EOF ) break;
    WritePrinter( ch );
  }
}

Oh dear, we introduced a bug

nice)

Version 3 fixes this bug
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3.2 Copy Version 4
Users want to write to 
files, of course they want
it backwards compatible

We know how to do that!

The Copy routine seems to
grow in size and complexi-
ty every time a feature is
added

The protocol to use it 
becomes more complicated
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3.2 Copy done properly in C

Finally a good C 
programmer comes to
the rescue!

But this is C?! 

FILE, fgetc and fputc behave like
an interface class

FILE represents a generic byte
stream manipulated by fgetc,
fputc etc.
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3.2 Copy in C++

More complicated
but easy to add new
features



26OO Class Design Principles Stefan Kluth

3.2 Copy Routine Summary

	 Lack of sensible design leads to code rot


 Useless complexity, repetition, opacity

	 Software systems are dynamic


 New requirements, new hardware

	 A good design makes the system flexible 
and allows easy extensions


 Abstractions and interfaces

	 An OO design may be more complex but it 
builds in the ability to make changes
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3.2 Dependency Management 
Summary

	 Controlling dependencies has several 
advantages for software system


 Not rigid, not fragile, reuseable, low viscosity

	 Also affects development environment


 Lower compile and link times, less testing


 More productive work

	 Plan for changes and maintainance


