
1OO Class Design Principles Stefan Kluth

3.3 Class Design Principles

� Single Responsibility Principle (SRP)

� Open/Closed Principle (OCP)

� Liskov Substitution Principle (LSP)

� a.k.a. Design by Contract

� Dependency Inversion Principle (DIP)

� Interface Segregation Principle (ISP)

2OO Class Design Principles Stefan Kluth

3.3 Single Responsibility
Principle (SRP)

A class should have only one reason to change
Robert Martin

Related to and derived from cohesion, i.e. that elements
in a module should be closely related in their function

Responsibility of a class to perform a certain function
is also a reason for the class to change

3OO Class Design Principles Stefan Kluth

3.3 SRP Example

All-in-one wonder Separated responsibilities

Always changes to 4vector Changes to rotations or boosts
don't impact on 4vector

4OO Class Design Principles Stefan Kluth

3.3 SRP Summary

� Class should have only one reason to
change

� Cohesion of its functions/responsibilities

� Several responsibilities

� mean several reasons for changes � more
frequent changes

� Sounds simple enough

� Not so easy in real life

� Tradeoffs with complexity, repetition, opacity

5OO Class Design Principles Stefan Kluth

3.3 Open/Closed Principle (OCP)

Modules should be open for extension,
but closed for modification

Bertrand Meyer
Object Oriented Software Construction

Module: Class, Package, Function

New functionality � new code, existing code remains unchanged

"Abstraction is the key" � cast algorithms in abstract interfaces
develop concrete implementations
as needed

6OO Class Design Principles Stefan Kluth

3.3 Abstraction and OCP

Client is closed to changes
of Server

Client is open for extension
through new Server
implementations

Without AbsServer the
Client is open to changes
in Server

7OO Class Design Principles Stefan Kluth

3.3 The Shape Example -
Procedural

Shape.h
enum ShapeType { isCircle, isSquare };
typedef struct Shape {
 enum ShapeType type
} shape;

Circle.h
typedef struct Circle {
 enum ShapeType type;
 double radius;
 Point center;
} circle;
void drawCircle(circle*);

Square.h
typedef struct Square {
 enum ShapeType type;
 double side;
 Point topleft;
} square;
void drawSquare(square*);

drawShapes.c
#include "Shape.h"
#include "Circle.h"
#include "Square.h"

void drawShapes(shape* list[], int n) {
 int i;
 for(int i=0; i<n; i++) {
 shape* s= list[i];
 switch(s->type) {
 case isSquare:
 drawSquare((square*)s);
 break;
 case isCircle:
 drawCircle((circle*)s);
 break;
 }
 }
}

RTTI a la C: Adding a new shape requires many changes

8OO Class Design Principles Stefan Kluth

3.3 Problems with Procedural
Implementation

� drawShapes is not closed

� switch/case probably needed in several places

� Adding a shape � modify switch/case

� There may be many and the logic may be more
complicated

� Extending enum ShapeType � rebuild
everything

� Rigid, fragile, highly viscous

9OO Class Design Principles Stefan Kluth

3.3 The Shape Example OO

DrawShapes is closed against changes
from adding new shapes
It is open for extension, e.g. adding new
functions to manipulate shapes

Just add new shapes or functions and relink

10OO Class Design Principles Stefan Kluth

3.3 OCP Summary

� Open for extension

� Add new code for new functionality, don't
modify existing working code

� Concrete implementations of interfaces
somewhere

� Closed for modification

� Need to anticipate likely modifications to be
able to plan ahead in the design

� e.g. ordering shapes? No closure against this
requirement ... but could be added in a design-
preserving way (low viscosity)

11OO Class Design Principles Stefan Kluth

3.3 OCP How-To

� How is the system going to evolve?

� How will its environment change?

� Isolate against kinds of changes, e.g.

� database schema (data model)

� hardware changes (sensors, ADCs, TDCs, etc)

� data store technology (e.g. Objectivity vs
ROOT)

� Plan ahead, but don't implement what is
not already needed

12OO Class Design Principles Stefan Kluth

3.3 Liskov Substitution Principle
(LSP)

All derived classes must be substituteable
for their base class

Barbara Liskov, 1988

The "Design-by-Contract" formulation:

All derived classes must honor the contracts
of their base classes

Bertrand Meyer

13OO Class Design Principles Stefan Kluth

3.3 The Square-Rectangle
Problem

Clients (users) of Rectangle expect
that setting height leaves width
unchanged (and vice versa)

Square does not fulfill this expectation
Client algorithms can get confused

Hack: attempt to identify subclasses
and use if/switch (RTTI)

This is evil!

14OO Class Design Principles Stefan Kluth

3.3 Contract Violation

� The contract of Rectangle

� height and width are independent, can set one
while the other remains unchanged, area =
height*width

� Square breaks this contract

� Derived methods should not expect more
and provide no less than the base class
methods

� Preconditions are not stronger

� Postconditions are not weaker

15OO Class Design Principles Stefan Kluth

3.3 The FourVector Example

A 4-vector IS-A 3-vector with a time-component? Not in OO,
4-vector has different algebra � can't fulfill 3-vector contracts

This can crash when v
is a FourVector

16OO Class Design Principles Stefan Kluth

3.3 LSP Summary

� Derived classes must fully substitute base
class

� Guides design and choice of abstractions

� Good abstractions are not always intuitive

� Violating LSP may break OCP

� Need RTTI and if/switch lost closure

� Inheritance/polymorphism powerful tools

� Use with care

� IS-A relation really means behaviour

17OO Class Design Principles Stefan Kluth

3.3 Dependency Inversion
Principle (DIP)

Details should depend on abstractions.
Abstractions should not depend on details.

Robert Martin

Why dependency inversion? In OO we have ways to
invert the direction of dependencies, i.e. class inheritance
and object polymorphism

18OO Class Design Principles Stefan Kluth

3.3 DIP Example
Dependency changed
from concrete to
abstract ...

... at the price of dependency
here, but is on an abstraction.
Somewhere a dependency on
concrete Server must exist,
but we get to choose where.

The abstract class
is unlikey to change

19OO Class Design Principles Stefan Kluth

3.3 DIP and Procedural Design

The BaBar Framework classes
depend on interfaces

Can e.g. change data store
technology without disturbing
the Framework classes

Procedural:
Call more concrete routines
Dependence on (reuseable)
concrete modules

In reality the dependencies are
cyclic

�

 need multipass link and
a "dummy library"

20OO Class Design Principles Stefan Kluth

3.3 DIP Summary

� Use DI to avoid

� deriving from concrete classes

� associating to or aggregating concrete classes

� dependency on concrete components

� Encapsulate invariants: generic algorithms

� Abstract interfaces don't change

� Concrete classes implement interfaces

� Concrete classes easy to replace

� Foundation classes?

� STL, CLHEP, MFC, etc

21OO Class Design Principles Stefan Kluth

3.3 Interface Segregation
Principle (ISP)

Many client specific interfaces are better
than one general purpose interface

Clients should not be forced to depend
upon interfaces they don't use

1) High level modules should not depend on
low level modules. Both should depend

upon abstractions (interfaces)
2) Abstractions should not depend upon

details. Details should depend abstractions.
Robert Martin

22OO Class Design Principles Stefan Kluth

3.3 ISP Explained

	 Multipurpose classes

 Methods fall in different groups

 Not all users use all methods

	 Can lead to unwanted dependencies

 Clients using one aspect of a class also depend
indirectly on the dependencies of the other
aspects

	 ISP helps to solve the problem

 Use several client-specific interfaces

23OO Class Design Principles Stefan Kluth

3.3 ISP Example: Timed Door

There may be derived classes of Door which don't need the
TimerClient interface. They suffer from depending on it
anyway.

24OO Class Design Principles Stefan Kluth

3.3 Timed Door ISP

RevolvingDoor does not depend needlessly on TimerClient
SwingDoor and SlidingDoor really are timed doors

25OO Class Design Principles Stefan Kluth

3.3 ISP Example: UIs

The Server "collects" interfaces
New UI � Server interface changes
All other UIs recompile

UIs are isolated from each other
Can add a UI with changes in
Server � other UIs not affected

26OO Class Design Principles Stefan Kluth

3.3 ISP Summary

� When a class (Server) collects interfaces for
various purposes (Clients) fat interface

 Use separate interfaces to hide parts of the
Server interface for Clients

 Similar to data hiding

 Or split the Server in several parts

� Be careful with vertical multiple
inheritance

 You might drag in dependencies you don't
want/need/like

27OO Class Design Principles Stefan Kluth

3.3 Class Design Principles:

	 Single Responsibility Principle

 Only one reason to change

	 Open-Closed Principle (OCP)

 Extend functionality with new code

	 Liskov Substitution Principle (LSP)

 Derived classes fully substitute their bases

	 Dependency Inversion Principle (DIP)

 Depend on abstractions, not details

	 Interface Segregation Principle (ISP)

 Split interfaces to control dependencies

