
1OO Package Design Principles Stefan Kluth

4 OO Package Design Principles

4.1 Packages Introduction
4.2 Packages in UML
4.3 Three Package Design Principles
4.4 Development Environment (Three more principles)
4.5 Summary

2OO Package Design Principles Stefan Kluth

4.1 Packages Introduction

� What is a package?

� Classes are not sufficient to group code

� Some classes collaborate � dependencies

� Some don't know each other

� Grouping related classes together seems
natural

� But how?

� Dependencies between packages

3OO Package Design Principles Stefan Kluth

4.1 Package

� A package is a group of classes

� Classes in a package are often compiled
together into a library

� but unit of compilation is mostly individual
class

� A package is a unit for testing

� A package can be a releasable component

� a CVS module

4OO Package Design Principles Stefan Kluth

4.2 Packages in UML

A package

A package with classes
shown inside

A dependency between packages

5OO Package Design Principles Stefan Kluth

4.2 Realisation

GUI depends on AbsUI

Associations exist between classes
in GUI and AbsUI

ServerStuff realises AbsUI,
it is a concrete package

An inheritance relationship exists
between classes in AbsUI and
ServerStuff

AbsUI is an abstract package

6OO Package Design Principles Stefan Kluth

4.3 Three Package Design
Principles

� Reuse-Release Equivalency Principle

� Common Closure Principle

� Common Reuse Principle

7OO Package Design Principles Stefan Kluth

4.3 Reuse-Release Equivalency
Principle (REP)

The unit of reuse is the unit of release
Bob Martin

It is about reusing software

Reuseable software is external software,
you use it but somebody else maintains it.
There is no difference between commercial
and non-commercial external software for reuse.

8OO Package Design Principles Stefan Kluth

4.3 Reuse-Release Equivalency

� Expectations on external software

� Documentation

� complete, accurate, up-to-date

� Maintainance

� bugs will be fixed, enhancements will be considered

� Reliability

� no major bugs

� no sudden changes

� can stay with proven versions (for a while)

9OO Package Design Principles Stefan Kluth

4.3 Release Control

� Requirements for reuseable software

� Put reuseable components into a package

� Track versions of the package (CVS)

� Assign release numbers to stable releases

� Stable releases need release notes

� Allow users to use older releases for a while

� The unit of reuse is the unit of release

10OO Package Design Principles Stefan Kluth

4.3 REP Summary

� Group components (classes) for reusers

� Single classes are usually not reuseable

� Several collaborating classes make up a
package

� Classes in a package should form a
reuseable and releaseable module

� Module provides coherent functionality

� Dependencies on other packages controlled

� Requirements on other packages specified

� Reduces work for the reuser

11OO Package Design Principles Stefan Kluth

4.3 Common Closure Principle
(CCP)

Classes which change together belong together
Bob Martin

Minimise the impact of change for the programmer.

When a change is needed, it is good for the programmer
if the change affects as few packages as possible, because
of compile and link time and revalidation

12OO Package Design Principles Stefan Kluth

4.3 From OCP to CCP

� OCP: Classes should be open for extension,
but closed for modification

� This is an ideal

� Classes will be designed for likely kinds of
changes

� Cohesion of closure for packages

� Classes in a package should be closed to the
same kinds of changes

� Changes will be confined within few packages

� Reduces frequency of release of packages

13OO Package Design Principles Stefan Kluth

4.3 CCP Summary

� Group classes with similar closure together

� package closed for anticipated changes

� Confines changes to a few packages

� Reduces package release frequency

� Reduces work for the programmer

14OO Package Design Principles Stefan Kluth

4.3 Commom Reuse Principle
(CRP)

Classes in packages should be reused together
Bob Martin

Packages should be focused, users should
use all classes from a package

CRP for packages is analogous to SRP for classes

15OO Package Design Principles Stefan Kluth

4.3 Common Reuse

� Use of a package brings in all its
dependencies

� When a user is only interested in a few
classes of a package

� the user code still depends on all dependencies
of the package

� the user code must be recompiled/relinked and
retested after a new release of the package,
even if the actually used classes didn't change

� CRP helps to avoid this situation

16OO Package Design Principles Stefan Kluth

4.3 CRP Summary

� Group classes according to common reuse

� avoid unneccessary dependencies for users

� Following the CRP often leads to splitting
packages

� Get more, smaller and more focused packages

� CRP analogous to SRP for classes

� Reduces work for the reuser

17OO Package Design Principles Stefan Kluth

4.3 The Triad Triangle

REP: Group
for reusers

CCP: Group for
maintainer

CRP: Split to get
common reuse

Unneeded
releases

Little reuser
convenience

Changes in
many packages

18OO Package Design Principles Stefan Kluth

4.4 The Development
Environment

� Controlling relations between packages

� Critical for large projects

� Programming, compile and link time

� Three more package design principles

� Acyclic Dependencies

� Stable Dependencies

� Stable Abstractions

� Other aspects of the development
environment

19OO Package Design Principles Stefan Kluth

4.4 The Acyclic Dependencies
Principle (ACP)

The dependency structure for packages must be
a Directed Acyclic Graph (DAG)

Stabilise and release a project in pieces
Avoid interfering developers � Morning after syndrome
Organise package dependencies in a top-down hierarchy

20OO Package Design Principles Stefan Kluth

4.4 Morning-After-Syndrome

� Not the one after an extended pub crawl

� You work on a package and eventually it
works 	 you go home happy

� The next day your package stopped
working!

� A package you depend upon changed

� Somebody stayed later or came in earlier

� When this happens frequently

� Developers interfere with each other

� Hard to stabilise and release

21OO Package Design Principles Stefan Kluth

4.4 Dependencies are a DAG
It may look complicated,
but it is a DAG (Directed
Acyclic Graph)

Can exchange
ObjyIO and RootIO

22OO Package Design Principles Stefan Kluth

4.4 Dependency Cycles

A cycle between Framework
and ObjyIO

Must develop together

May need multipass link

23OO Package Design Principles Stefan Kluth

4.4 ADP Summary

� Dependency structure of packages is a
DAG

� Dependency cycles 	 Morning-After-
Syndrome

� Dependency hierarchy should be shallow

� Break cycles with

 Abstract interfaces (DIP)

 Splitting packages (CRP)

 Reorganising packages

24OO Package Design Principles Stefan Kluth

4.4 Stable Dependencies
Principle (SDP)

Dependencies should point in
the direction of stability

Robert Martin

Stability: corresponds to effort required to change a package
stable package � hard to change within the project
Stability can be quantified

25OO Package Design Principles Stefan Kluth

4.4 Quantifying Stability
A is a stable package,
many other packages
depend on it

� Responsible
I = 0

A is unstable, it
depends on many
other packages

� Irresponsible
I = 1

C
a
= # classes outside the package

 which depend on classes
 inside the package
 (incoming dependencies)

C
e
= # classes outside the package

 which classes inside the
 package depend upon
 (outgoing dependencies)

I �

Ce

Ca

Ce

Instability
I-Metric

26OO Package Design Principles Stefan Kluth

4.4 SDP Example

E depends on
F, G and E. A
depends on it. E
is responsible and
irresponsible.

A responsible
for B, C, D.
It depends on E,

� irresponsible

A responsible for
B, C, D, E. It will
be hard to change

E depends on A,
F, G and H. It is
irresponsible and
will be easy to
modify.

Bad Good

27OO Package Design Principles Stefan Kluth

4.4 SDP Summary

� Organise package dependencies in the
direction of stability

� (In-) Stability can be quantified 	 I-Metric

� Dependence on stable packages
corresponds to DIP for classes

 Classes should depend upon (stable)
abstractions or interfaces

 These can be stable (hard to change)

28OO Package Design Principles Stefan Kluth

4.4 Stable Abstractions Principle
(SAP)

Stable packages should be abstract packages.
Unstable packages should be concrete packages.

Robert Martin

Stable packages contain high level design. Making them
abstract opens them for extension but closes them for
modifications (OCP). Some flexibility is left in the stable
hard-to-change packages.

29OO Package Design Principles Stefan Kluth

4.4 Quantifying Abstractness

� The Abstractness of a package can be
quantified

� Abstractness A is defined as the fraction of
abstract classes in a package.

� Corresponds to abstract classes

 Abstract classes have at least one pure virtual
member function

 Abstract packages have at least one abstract
class

30OO Package Design Principles Stefan Kluth

4.4 Correlation of Stability and
Abstractness

� Abstract packages should be responsible
and independent (stable)

 Easy to depend on

� Concrete packages should be irresponsible
and dependent (unstable)

 Easy to change

31OO Package Design Principles Stefan Kluth

4.4 The A vs I Plot

Abstractness
A

I
Instability

1

0 1
M

ain Sequence

Abstract and unstable

� probably useless

Unstable and concrete

� good

Abstract and stable

� good

Stable and concrete

� problematic,
CLHEP, STL,
DB schema ok,
not volatile

32OO Package Design Principles Stefan Kluth

4.4 Distance from Main
Sequence D-Metric

D = | A+I-1 | Normalised so that D � [0,1]

Can use mean and standard deviation to set control limits

Can find troublesome packages

Concrete and stable packages like CLHEP or STL will
have D � 1

33OO Package Design Principles Stefan Kluth

4.4 Examples from BaBar

Offline code packages
release 6.0.1 (early 1999)

Much of the BaBar code at
the time was too concrete
for its stability

At least the problem was
recognised ...

34OO Package Design Principles Stefan Kluth

4.4 SAP Summary

� Stable packages should be abstract

� In a large project packages should have a
balance of Abstractness and Instability

� Lie close to the main sequence in A-I-plot

� Metrics I and A help to quantify code
quality

� Other metrics exist too

� Code volume and code growth rate

� Bug discovery and extinction rate

35OO Package Design Principles Stefan Kluth

4.5 Mapping Packages on the
Computer

� The BaBar example

� Each package corresponds to a directory with
flat structure under individual CVS control

� Contains headers (.hh), code (.cc), docs

� GNUmakefile fragment for building and
dependencies

� Build target: link library and possibly binaries

� #include "package/class.hh"

� Works well ... easy to understand

36OO Package Design Principles Stefan Kluth

4.5 Object Oriented Design
Summary

� Class Design
Principles

� Single Responsibility

� Open-Closed

� Liskov Substitution

� Dependency
Inversion

� Interface Segregation
� Package Design

Principles

� Reuse-Release
Equivalence

� Common Closure

� Common Reuse
� Acyclic Dependencies

� Stable Dependencies

� Stable Abstractions

