
UML for OOAD Stefan Kluth 1

2 UML for OOAD

2.1 What is UML?
2.2 Classes in UML
2.3 Relations in UML
2.4 Static and Dynamic Design with UML

UML for OOAD Stefan Kluth 2

2.1 UML Background
"The Unified Modelling Language (UML) is a graphical
language for visualizing, specifying, constructing, and
documenting the artifacts of a software-intensive system.
The UML offers a standard way to write a systems blueprints,
including conceptual things like business processes
and system functions as well as concrete things such as
programming language statements, database schemas, and
reusable software components."

Grady Booch, Ivar Jacobsen, Jim Rumbaugh
 Rational Software

[OMG Unified Modelling Language Specification, Version 1.3, March 2000]

UML for OOAD Stefan Kluth 3

2.1 Brief UML History

� Around 1980

� first OO modelling languages

� other techniques, e.g. SA/SD

� Around 1990

� "OO method wars"

� many modelling languages

� End of 90's

� UML appears as combination of best practices

UML for OOAD Stefan Kluth 4

2.1 Why UML?

� Physicists know formal graphical
modelling

� Mathematics to describe nature

� Feynman graphs to calculate amplitudes

� We need a common language

� discuss software at a black- (white-) board

� Document software systems

� UML is an important part of that language

� UML provides the "words and grammar"

UML for OOAD Stefan Kluth 5

2.2 Classes in UML

� Classes describe objects

� Interface (member function signature)

� Behaviour (member function implementation)

� State bookkeeping (values of data members)

� Creation and destruction

� Objects described by classes collaborate

� Class relations � object relations

� Dependencies between classes

UML for OOAD Stefan Kluth 6

2.2 UML Class

Class name

Data members

Instance methods

Arguments
Return types

Data members, arguments and methods are specified by
visibility name : type

Class method

UML for OOAD Stefan Kluth 7

2.2 Class Name

The top compartment
contains the class name

Abstract classes have italicised
names
Abstract methods also have
italicised names

Stereotypes are used to identify
groups of classes, e.g interfaces
or persistent (storeable) classes

UML for OOAD Stefan Kluth 8

2.2 Class Attributes
Attributes are the instance
and class data members

Class data members (underlined)
are shared between all instances
(objects) of a given class

Data types shown after ":"

Visibility shown as
+ public
- private
protected

Attribute
compartment

visibility name : type

UML for OOAD Stefan Kluth 9

2.2 Class Operations (Interface)

Operations are the class
methods with their argument
and return types

Public (+) operations define the
class interface

Class methods (underlined)
have only access to class data
members, no need for a class
instance (object) Operations

compartment
visibility name : type

UML for OOAD Stefan Kluth 10

2.2 Visibility

+
public

Anyone can access

Interface operations

Not data members

-
private

No-one can access

Data members

Helper functions

"Friends" are allowd
in though

#
protected

Subclasses can access

Operations where sub-
classes collaborate

Not data members
(creates dependency
of subclass on im-
plementation of parent)

UML for OOAD Stefan Kluth 11

2.2 Template Classes

Generic classes depending on parametrised types

Type parameter(s)

Operations compartment
as usual, but may have
type parameter instead of
concrete type

UML for OOAD Stefan Kluth 12

2.3 Relations

� Association

� Aggregation

� Composition

� Parametric and Friendship

� Inheritance

UML for OOAD Stefan Kluth 13

2.3 Binary Association
Binary association: both classes know each other

Usually "knows about" means a pointer or reference
Other methods possible: method argument, tables, database, ...
Implies dependency cycle

UML for OOAD Stefan Kluth 14

2.3 Unary Association
A knows about B, but B knows nothing about A

Arrow shows direction of
association in direction of
dependency

UML for OOAD Stefan Kluth 15

2.3 Aggregation
Aggregation = Association with "whole-part" relationship

Shown by hollow diamond
at the "whole" side

No lifetime control implied

UML for OOAD Stefan Kluth 16

2.3 Composition
Composition = Aggregation with lifetime control

Shown by filled diamond
at the "owner" side

Lifetime control implied

Lifetime control can be
tranferredLifetime control: construction and

destruction controlled by "owner"

� call constructors and destructors
(or have somebody else do it)

UML for OOAD Stefan Kluth 17

2.3 Association Details
Name gives details of association
Name can be viewed as verb of a sentence

Notes at association ends
explain "roles" of classes (objects)

Multiplicities show number of
objects which participate in the
association

UML for OOAD Stefan Kluth 18

2.3 Friendship
Friends are granted access to private data members and
member functions
Friendship is given to other classes, never taken

Bob Martin:
More like lovers than friends.
You can have many friends,
you should not have many lovers Friendship breaks data hiding, use carefully

UML for OOAD Stefan Kluth 19

2.3 Parametric Association
Association mediated by a parameter (function call argument)

A depends upon B, because it uses B
No data member of type B in A

UML for OOAD Stefan Kluth 20

2.3 Inheritance

Base class or super class

Derived class or subclass

Arrow shows direction
of dependency

� B inherits A's interface,
behaviour and data members

� B can extend A, i.e. add new
data members or member functions

� B depends on A,
A knows nothing about B

UML for OOAD Stefan Kluth 21

2.3 Associations Summary

� Can express different kinds of associations
between classes/objects with UML

� Association, aggregation, composition,
inheritance

� Friendship, parametric association

� Can go from simple sketches to more
detailed design by adding adornments

� Name, roles, multiplicities

� lifetime control

UML for OOAD Stefan Kluth 22

2.3 Multiple Inheritance

The derived class inherits
interface, behaviour and
data members of all its
base classes

Extension and overriding
works as before

B implements the interface A and
is also a "countable" class

Countable also called a "Mixin class"

UML for OOAD Stefan Kluth 23

2.3 Deadly Diamond of Death

Now the @*#! hits the %&$?

Data members of TObject are
inherited twice in B, which ones
are valid?

Fortunately, there is a solution
to this problem:

�

virtual inheritance in C++:
only one copy of a multiply
inherited structure will
be created

(A C++ feature)

UML for OOAD Stefan Kluth 24

2.4 Static and Dynamic Design

� Static design describes code structure and
object relations

� Class relations

� Objects at a given time

� Dynamic design shows communication
between objects

� Similarity to class relations

� can follow sequences of events

UML for OOAD Stefan Kluth 25

2.4 Class Diagram

� Show static relations between classes

� we have seen them already

� interfaces, data members

� associations

� Subdivide into diagrams for specific
purpose

� showing all classes usually too much

� ok to show only relevant class members

� set of all diagrams should describe system

UML for OOAD Stefan Kluth 26

2.4 Object Diagram

Object diagram shows
relations at instant in time
(snapshot)

Object relations are drawn
using the class association
lines

Class diagram
never changes

UML for OOAD Stefan Kluth 27

2.4 Sequence Diagram
Show sequence of events for a particular use case

Object

Lifeline

Activation

Messages
half-arrow=asynchronous,
full arrow=synchronous, dashed=return

Active object

UML for OOAD Stefan Kluth 28

2.4 Sequence Diagram

Can show creation and
destruction of objects

Destruction mark

UML for OOAD Stefan Kluth 29

2.4 Sequence Diagram

Slanted messages take
some time

Can model real-time
systems

UML for OOAD Stefan Kluth 30

2.4 Sequence Diagram

Crossing message lines
are a bad sign

� race conditions

UML for OOAD Stefan Kluth 31

2.4 Collaboration Diagram

Object diagram with
numbered messages

Sequence numbers of messages
are nested by procedure call

UML for OOAD Stefan Kluth 32

2.4 Static and Dynamic Design
Summary

� Class diagrams 	 object diagrams

 classes � objects; associations � links

� Dynamic models show how system works

 Sequence and collaboration diagram

� There are tools for this process

 UML syntax and consistency checks

� Sketches by hand or with simple tools

 aid in design discussions

UML for OOAD Stefan Kluth 33

Some Comments

� Design-heavy development processes

 several 10% of person-power/time spent on
design with formal UML from requirements

 start coding when the design is consistent

 large software houses may work this way

� Lighter processes

 a few % of person-power/time spent with UML

 UML as a discussion and documentation aid

 probably more adequate in HEP

