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The maximum-likelihood principle

A standard data analysis problem:

A measurement is performed in the space of the random variable x.

The distribution of the measured values x is assumed to be known to follow the (normalized)
probability density p(x; a)

p(x; a) ≥ 0 with

∫
Ω
p(x; a) dx = 1

in the x-space, which depends on a single parameter a.

From a given set of n measured values x1, . . . , xi, . . . , xn the optimal value of the
parameter a has to be estimated.
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The Likelihood function

The maximum-likelihood method starts from the joint probability distribution of the n mea-
sured values x1, . . . , xi, . . . , xn.

For independent measurements this is given by the product of the individual densities p(x|a),
which is

L(a) = p(x1|a) · p(x2|a) · · · p(xn|a) =

n∏
i=1

p(xi|a) .

The function L(a), for a given set {xi} of measurements considered as a function of the pa-
rameter a, is called the likelihood function.

The likelihood function is a function, it is not a probability density of the parameter a (→
Bayes interpretation).
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Principle of Maximum Likelihood

The estimate â for the parameters a is the value, which maximizes the likelihood function
L(x|a).

For technical and also for theoretical reasons it is easier to work with the logarithm (a monoton-
ically increasing function of its argument) of the likelihood function L(a), or with the negative
logarithm. In the following the negative log-likelihood function is considered,

F (a) = − lnL(a) = −
n∑

i=1

ln p(xi|a)

and the maximum likelihood estimate â is the value that minimizes this function.

Likelihood equation, defining estimate â:
dF (a)

da
= 0

Sometimes a factor of 2 is included in the definition of the negative log-likehood function; this factor makes it similar to the

χ2-expression of the method of least squares in certain applications: F (a) = −2 lnL(a).
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Combining results of experiments

The combination of results

• from different experiments or

• from different measurements,

depending on the same parameter(s), is straightforward:

L(a) = L2(a) · L2(a) multiply Likelihood functions

F (a) = F1(a) + F2(a) add log. Likelihood functions
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Least Squares and Maximum Likelihood

If the measurements yi are gaussian distributed around the expected value f (xi; a) (containing
p parameters a to be estimated) with variance σ2

i , i.e. if they follow a density

1√
2πσi

exp

[
−(yi − f (xi; a))

2

2σ2
i

]
,

then the neg. log. Likehood function F (a) = − lnL(a) is

F (a) =
1

2

n∑
i=1

(yi − f (xi; a))
2

σ2
+ const.

i.e. the expressions to be minimized are identical in the methods of Least Squares and Maximum
Likelihood (except for a factor 1/2).

In case of a correct model the quantity 2F (a) at the minimum follows the χ2-distribution with
(n− p) degrees of freedom.
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Comparison

Comparison between Maximum Likelihood (ML) method and the Least Squares (LS) method:

ML requires full knowledge on the probability density of data.

LS requires no detailed knowledge on the probability density of data, only the mean and
variance (first two moments of distribution), have to be known (data unbiased and variance
known).

Efficiency:

ML estimate â is usually a nonlinear function of the data, and reaches asympotically the full
efficiency, defined by the information I ,

LS estimate â is a linear function of the data (in linear least squares) and is most efficient
among the linear estimates.

In a special case (previous page): ML → LS
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Example of angular distribution

The value x ≡ cos ϑ is measured in n decays of an elementary particle. According to theory
the distribution is

p(cos ϑ) =
1

2
(1 + a cos ϑ)

This probability density is normalized for all physical values of the parameter a, if the whole
range of cos ϑ can be measured.

The aim is to get an estimate of the parameter a.

minimize L(a) =

n∏
i=1

[
1

2
(1 + a cos ϑi)

]
maximize F (a) = −

n∑
i=1

ln (1 + a cos ϑi) + const.

Note: The normalization is parameter dependent, if the measured range of cos ϑ is limited.
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. . . contnd.

Observations:

• the value of F (a) at the minimum is fluctuating;

• the shape of F (a) is close to a parabola;

• the value of the curvature increases with increasing number of observations n; the minimum
is getting sharper.

value of F (a) at the minimum: provides for binned Maximum likelihood a test of goodness-
of-fit (how well are the data described by the model?), but in general not for unbinned
cases!
In practice this may require repeated MC simulations of the experiment to determine the
distribution of F (a)min

inverse curvature: corresponds to the variance of the parameter estimate, at least asymp-
totically.
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. . . contnd.

• shape of F (a) approximately parabolic

• first derivative approximately linear

• second derivative approximately constant
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Estimate of variance

Second derivative H of F (a) corresponds to inverse of the variance σ2 of the parameter estimate:
σ2 = 1/H and σ = 1/

√
H .

Taylor expansion of F (a):

F (a)− F (â)min =
1

2
H (a− â)

2
+ . . .

If | (a− â) | = 1 σ, then

F (a)− F (â)min =
1

2

Values a with ∆F = F (a)− F (â)min = 1/2 can be used to estimate the standard deviation σ
of the parameter estimate.

But distinguish between

• fluctuations ∆F of the minimum value (in binned maximum likelihood → goodness-of-fit),
and

• curvature, which can be estimated from ∆F .
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Search for special events in two channels

channel meas. ni expected: (total) signal S background B
a 6 1.1± 0.3 0.9± 0.3 0.2± 0.1
b 24 28.0± 6.0 4.00± 0.6 24.00± 6.0

Model includes factor f : µi = f · S + B

Questions:

• Are the two measurements compatible?

• Are both measurements compatible with f = 1, which is the standard expectation from
theory?

V. Blobel – University of Hamburg The maximum-likelihood method page 12



Method to answer the questions

Use Maximum Likelihood method to obtain best estimate for the factor f from all data!

Likelihood function and negative log Likelihood function, based on Poisson distribution of data
ni with mean values given by model:

L(f ) = P (n1|µ1) · P (n2|µ2) =
e−µ1µn1

1

n1!
· e

−µ2µn2
2

n2!

F = − lnL(f ) =

2∑
i=1

(µi − ni ln µi) + const.
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Negative log likelihood function

2 3 4

-54.8

-54.6

-54.4

-54.2

-54

Result for factor: f = 2.96
+1.09
−0.94

Note: statistical fluctuations for SM(...) ignored.
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Negative log likelihood function

2 3 4

-54

-53.5

-53

Result for factor: f = 3.05
+1.09
−0.94

Note: statistical fluctuations for SM(...) NOT ignored.
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Example: exponential distribution

Measured are n times ti, which should be distributed according to the density

p(t; τ ) =
1

τ
exp

[
− t

τ

]
.

Log. Likelihood function for parameter τ , to be estimated from the data:

F (τ ) = −
n∑

i=1

ln p(t; τ ) = −
n∑

i=1

(
ln

1

τ
− ti

τ

)
By minimization of F (τ ) the resulting estimate is

τ̂ =
1

n

n∑
i=1

ti with E [τ̂ (t1, t2, . . .)] = τ

i.e. the estimator is unbiased.

Note: in general mean values are unbiased.
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. . . contnd.

Instead of parameter τ the parameter λ in the density

p(t; λ) = λ exp [−λ t] .

has to be estimated. Can the previous result be used?

yes, because of

(
∂L
∂τ

)
=

(
∂L
∂λ

)
· ∂λ

∂τ
= 0

the Maximum Likelihood estimate for λ is

λ̂ =
1

τ̂

(note: L(a) is a function of a, not a density).

But:

E
[
λ̂(t1, t2, . . .)

]
=

n

n− 1
λ =

n

n− 1

1

τ
biased!

i.e. there is invariance of the Maximum Likelihoid estimates w.r.t. transformations, but only
one parametrization can be unbiased.
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Properties of the maximum-likelihood estimates

Maximum-likelihood estimates â

Consistency: The estimate â of the MLM is asymptotically (n →∞) consistent. For finite
values of n there may be a bias B(â) ∝ 1/n.

Normality: The estimate â is, under very general conditions, asymptotical normally dis-
tributed with minimal variance V (â).

Invariance: The maximum likelihood solution is invariant under change of parameter – the
estimate b̂ of a function b = b(a) is given by b̂ = b(â). The bias B(â) for finite n may be
different for different functions of the parameter.

Efficiency: If efficient estimators exist for a given problem the maximum likelihood method
will find them.
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Information inequality

Information I(a) = E

[(
∂ lnL
∂a

)2
]

=

∫
Ω

(
∂ lnL
∂a

)2

L dx1dx2 . . . dxn

This is the definition of information, where L is the joint density of the n observed values of
the random variable x.

Information inequality V [â] ≥ 1

I

The inverse of the information In(a), or short I , is the lower limit of the variance of the
parameter estimate â – minimum variance bound MVB.

The inequality is also called Rao-Cramér-Frechet inequality, and is valid in this form for any
unbiased estimate â = â(x).
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Efficiency and bias

Definition of the efficiency of an estimator:
For an unbiased estimator â one can define the efficiency eff(â) by the ratio of the mininal to
the actual variance:

Efficiency eff(â) =
I−1

V [â]
0 ≤ eff(â) ≤ 1

The actual efficiency of an estimator depends on the specific problem and method.

Variance limit in case of a bias Bn(â) = E [â]− atrue 6= 0:

Variance V [â] ≥ (1 + ∂B/∂a)
2

I
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Alternative expression of information I

From the proof of the information inequality in previous chapter:∫
Ω

(
∂ lnL
∂a

∂L
∂a

+
∂2 lnL
∂a2

L
)

dx1dx2 . . . dxn = 0 ,

Rewritten in terms of expectation values:

I(a) = E

[(
∂ lnL
∂a

)2
]

= −E

[
∂2 lnL
∂a2

]

i.e. either square of first derivative or negative second derivative.

The second derivative is almost constant: expectation value is close to value at the minimum

I(a) = −E

[
∂2 lnL
∂a2

]
≈ ∂2F (a)

∂a2

∣∣∣∣
a=â
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Case of several variables

Case of m variables a1, . . . , aj, . . . , am: information I becomes a m-by-m symmetric matrix I
with elements

Ijk = E

[
∂ lnL
∂aj

∂ lnL
∂ak

]
= −E

[
∂2 lnL
∂aj∂ak

]

The minimal variance V [â] of an estimate â is given by the inverse of the information matrix
I :

minimal variance V [â] = I−1

V. Blobel – University of Hamburg The maximum-likelihood method page 22



Normality

Normality: The estimate â is, under very general conditions, asymptotical normally dis-
tributed with minimal variance V (â), i.e.

lim
n→∞

V [â] = I−1 =
1

n

{
E

[
∂ ln p

∂a

]2
}−1

.

Asymptically the likelihood equation becomes a function, which is linear in the parameter
a (constant second derivative).

Calculation of variance and covariance matrix in practice:

V [â] =

(
d2F

da2

∣∣∣∣
a=â

)−1

V [â] = H with Hjk =
∂2F

∂aj∂ak
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Invariance

The Likelihood function is a function of a, and is not a probability density of a.

Invariance: The maximum likelihood solution is invariant under change of parameter – the
estimate b̂ of a function b = b(a) is given by b̂ = b(â). The bias B(â) for finite n may be
different for different functions of the parameter.

Example: Parameter of an exponential distribution

Exponential probability density distribution for the decay of unstable particles

p(t; τ ) =
1

τ
e−t/τ or p(t; λ) = λe−λ t

dependent on the mean lifetime τ or the decay constant λ = 1/τ .
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. . . contnd.

Negative log-likelihood function for given data t1, . . . , ti, . . . , tn is

F (τ ) = −
n∑

i=1

ln p(ti; τ ) =

n∑
i=1

(
ti

τ
− ln

1

τ

)
.

Minimizing F (τ ) with respect to τ :

τ̂ =
1

n

n∑
i=1

ti E [τ̂ (t1, . . . , ti, . . . , tn)] = τtrue unbiased

If decay constant λ = 1/τ is used: λ̂ = 1/τ̂ , or

λ̂ =
n

n∑
i=1

ti

E
[
λ̂
]

=
n

n− 1
λtrue = λtrue +

1

n− 1
λtrue bias 6= 0
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Bayesian parameter estimation

Both the data x and the parameters a are random variables.

• Before the experiment the knowledge about a is summarized by π(a) – called prior density,
for example π(a) = const..
π(a) = 0 outside the physical region.

• Bayes theorem is used to update the prior
using the data x expressed by L(x|a)

P (a|x) da =
L(x|a) π(a) da∫
L(x|a′) π(a′) da′

to obtain the posterior density P (a|x) of the parameter a; i.e. the function L(x|a) of the
parameter is transformed to a density of the parameter.

“The information contained in an observation x with respect to the parameter a is summarized
by the density P (a|x). The density P (a|x) of the actual observation is all what matters for
the parameter inference.”

→ relevant for the calculation of limits.
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Application of the maximum-likelihood method

Application of the maximum-likelihood method may be complicated due to imperfections of
the measurement:

• limited acceptance,

• finite resolution

• non-negligible background contribution.

In principle there seem to be two possibilities, to take these conditions into account:

• try to correct the data, or

• modify the theoretical distribution according to the real properties of the measurement -
the correct method.
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Limited acceptance

Limited acceptance is described by an acceptance function

A(x) = probability of observation with 0 ≤ A(x) ≤ 1

”Acceptance”-correction: assignment of a weight wi = 1/A(xi) to the data element xi.

If for example A(xi) = 0.5, the measurement xi would get a weight wi = 2. This method may
be acceptable for a histogram of the measured distribution; the weighted histogram is then
called ”acceptance”-corrected.

Weighting method: replace in the likelihood function f (xi, a) by

f (xi, a)wi with the result F (a) = −
n∑

i=1

wi ln f (xi|a).

Resulting errors will be wrong. Especially problems with large weights with acceptance A(xi) �
1.

V. Blobel – University of Hamburg The maximum-likelihood method page 28



Limited acceptance – correct treatment

The correct way is to modify the expectation and to replace p(xi|a) by the properly normalized
probability density

N (a)−1 · A(xi) · p(xi, a)

with the normalization factor N defined by

N =

∫
Ω
A(x)p(x, a) dx

In general the normalizing factor will depend on the actual parameter value.

The correct treatment will require a large effort in computation: during the minimization the
normalization has to be repeated for every new value of the parameter.
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Limited acceptance - example

According to the exponential decay law the decay time distribution is proportional to e−t/τ ,
where τ is the mean lifetime.

For a measurement, which is sensitive only in the time region t1 . . . t2, the p.d.f is correctly
normalized by the condition

∫ t2

t1
p(t) dt = 1, resulting in the expression

p(t) dt =
e−t/τ

τ (e−t1/τ − e−t2/τ)
dt ,

valid in the rest system of the particle (the mean decay time τ is defined in the rest system of
the particle).

The parameter value will be biased, if this normalization is neglected.
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Finite resolution

The measured data are ”smeared” by a certain resolution function.

The expected distribution is

p(x, a) folded with resolution function A(xmeas, x)

Result of folding is new distribution

q(x, a) =

∫
A(xmeas, x)p(x, a) dx

which has to be normalized and used in the Likelihood function.
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Background contribution

The measured distribution may contain, in addition to the theoretical distribution p(x, a), an
additional contribution due to background.

For a M.L. fit the background distribution has to be known, either by a measurement of by a
simulation.

p(x, a) dx signal distribution

q(x) dx background distribution

(1− α)p(x, a) dx + αq(x) dx fit distribution

The parameter α has either to be known before or has to be fitted.

V. Blobel – University of Hamburg The maximum-likelihood method page 32



Binned maximum-likelihood

Measurement: sample of real data, each element of which consists of a set of values {x}.

Binning: dividing the one- or multi-dimensional space of the {x} into n bins. This subdivision
gives a set of numbers {d1, d2, . . . , dn}, where di is the number of events in the real data that
fall into bin i.

The values di are integers 0, 1, . . .

di = number of events in the real data that fall into bin i

ND =

n∑
i=1

di = total number in the data sample

The real data arise from a number of sources (or physical processes) and the aim is to determine
the proportions Pj of the different sources in the data from the statistical data di and from
models for the sources.

One has to distinguish the case, where analytic forms are available for the distribution of the
sources and where no analytic forms are available.
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Model with analytic prediction

Calculate, by integration over the bins, numbers aji proportional to the expected number of
events from source j in bin i; these values have no statistical errors.

Pj = proportion of source j in the data ( sum to unity)

aji =

∫
bin i

fj(x) dx = numbers, proportional

to expected number from source j expected in bin i

Nj =

n∑
i=1

aji

aji/Nj = fraction of events from source j expected in bin i

The predicted number of events in bin i is, for the proportions Pj, given by the sum

fi = ND

m∑
j=1

Pj

aji

Nj

or fi =

m∑
j=1

pj aji

with strength factors pj = NDPj/Nj.
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Approximate solution by least squares

Measured numbers di follow Poisson distribution.

”Standard” method (χ2 minimization): approximate Poisson distribution by normal distribu-
tion with standard deviation σi =

√
di

adjust pj to minimize S(p) =

n∑
i=1

(di − fi)
2

di

This approximation will lead to biased results for small di.

Better use correct Poisson distribution.
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Poisson maximum likelihood

If the mean value in a bin is f , then the observed values d = 0, 1, . . . follow the Poisson
distribution

Pf(d) = e−f f d

d!
with normalization

∞∑
d=0

Pf(d) = 1 .

Strength factors are found by maximizing the total likelihood

L(p) =

n∏
i=1

Pfi
(di) =

n∏
i=1

e−fi
f di

di!

with respect to the parameters p or equivalently, by minimizing the negative logarithm of the
likelihood F (p) = − lnL(p):

F (p) =

n∑
i=1

(fi − di · ln fi)

omitting constant factors in the product like 1/di!.
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Poisson maximum likelihood contnd.

This expression correctly accounts for small numbers of data events di in a bin or even zero
data events in some bins. The method is called binned maximum likelihood fit.

There is some advantage in redefining the function F to be minimized by adding some constants
as

F (p) =

n∑
i=1

gi with gi =

{
(fi − di)− di · ln(fi/di) if di > 0

fi if di = 0
.

The position of the minimum and the shape of F is not changed by his modification, but now
2F is approximately distributed according to the χ2 distribution (with (n − m) degrees of
freedom).
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Poisson approximation by Gaussian Example: observed y = 7

Blue curve is Gaussian approximation with µ = σ2 = 7 in both figures.

Poisson density for µ = 7:

P =
µne−µ

n!

0 5 10 15
1E-4

0.001

0.01

0.1

n

densities

Poisson ML contribution:

P =
f ye−f

y!

0 5 10 15
1E-4

0.001

0.01

0.1

f

ML contributions
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Histogram fits

Should on use a least squares fit (χ2 minimization) of Poisson maximum likelihood in a fit to
histogram data?

Some people put the requirement as low as λ = 5, but 10 is probably safer. [?]

It is undesibale to have less than five events in any bin. [?]

Just excluding bins with no entries will introduce a bias.
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Poisson contribution to objective function

F (a) =
∑

i

f (xi, a)− yi ln f (xi, a)

or better F (a) =
∑

i

(f (xi, a)− yi) + yi ln
yi

f (xi, a)

∂F

∂aj

=
∑

i

yi

∂f
∂aj

f (xi, a)
− ∂f

∂aj

∂2F

∂aj∂ak

=
∑

i

yi

∂f
∂aj

∂f
∂ak
− ∂2f

∂aj∂ak
f (xi, a)

f 2(xi, a)
−
∑

i

∂2f

∂aj∂ak
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Model without analytic prediction

Often no analytical calculation possible for the distributions of the sources.
Instead a Monte Carlo simulation is used to generate data according to the model of the source.
These MC samples can be binned in the same way as the real data, giving a set of integer
numbers {aj1, aj2, . . . ajn} for source j. Now both the real data di and the data aji are of
statistical nature with integer values 0, 1, . . . .

aji = number of Monte Carlo events from source j in bin i

Nj =

n∑
i=1

aji = total number in the MC sample for source j

The Monte Carlo samples are finite, leading to statistical fluctuations in the numbers aji.
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Model without analytic prediction What to do?

• If the Monte Carlo samples are much larger than the data sample, one may ignore these
fluctuations and use

fi =

m∑
j=1

pj aji

as before; the fluctuations in the aji are damped by the factor ND/Nj. Usually it is assumed
that a factor of 10 in the size of the Monte Carlo samples compared to the date sample
should be large enough.

• However often the statistical fluctuations in the aij of the Monte Carlo sample can not
be ignored, and one has to consider them together with the statistical fluctuations of the
data di. A method to treat the problem within the maximum-likelihood method has been
developed by R. Barlow.
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Model without analytic prediction What to do?

Barlow method: there is for each source, in each bin, some (unknown) expected number of
events Aji

fi =

m∑
j=1

pjAji .

From each Aji the corresponding aji is generated by a distribution which can be taken as
Poisson.

The total Likelihood is the combined probability of the observed {di} and of the observed
{Aji}:

F = − lnL =

n∑
i=1

[fi − di · ln fi] +

n∑
i=1

m∑
j=1

[Aji − aji · ln Aji]

F = − lnL =

n∑
i=1

[
m∑

j=1

pjAji − di · ln
m∑

j=1

pjAji

]
+

n∑
i=1

m∑
j=1

[Aji − aji · ln Aji]
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Large number of unknowns

Large number of unknowns:

• m unknown strength factors pj plus m× n unknowns Aji,

• compared to n bin data {d1, d2, . . . , dn} and m× n MC bin data.

Set the derivatives of F with respect to the strength factors pj and the event numbers Aji to
zero:

n∑
i=1

[
Aji −

diAji

fi

]
= 0 j = 1, 2, . . . m

1− aji

Aji

+ pj −
di pj

fi

= 0 j = 1, 2, . . . m i = 1, 2, . . . n

Thus one has to solve a system of m+m×n simultaneous, nonlinear equations for the m+m×n
unknowns.
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Large number of unknowns

Original paper by Barlow: last set of equations rewritten in the form

1− di

fi

=
1

pj

(
aji

Aji

− 1

)
j = 1, 2, . . . m i = 1, 2, . . . n

Left hand side depends on index i only, so it can be written as ti = 1 − di/fi and one can
express Aji in the form

Aji =
aji

1 + pj ti

,

This simplifies the problem! For a given set of pj the m× n unknowns Aji are given by the n
unknowns ti (defined above). If di = 0 then ti = 1, and if not, then

di

1− ti

= fi =

m∑
j=1

pjAji =

m∑
j=1

pj

aji

1 + pj ti
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. . . contnd.

The equations are not coupled and the values ti are determined independently for each bin i.
This is a great simplification: instead of m× n unknowns Aji the are only n unknowns ti.

Since, for a given bin i, all the m values Aji are combined to one value fi, which has to be
compared to one measured value di, it is clear that this reduction of the number of parameters
per bin from m to 1 has to be possible.

Strategy: the ti are considered as the essential parameters, not the Aji. The Aji are eliminated
and expressed by the ti. The function to be minimised is written in the form

F = − lnL =

n∑
i=1

[(
m∑

j=1

pjaji

1 + pjti

)
− di · ln

(
m∑

j=1

pjaji

1 + pjti

)]

+

n∑
i=1

m∑
j=1

[
aji

1 + pjti

− aji · ln
aji

1 + pjti

]
with the m unknowns pj and the n unknowns ti.
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ML fit of binned distributions

Expectation value for bin content yi, i = 1, 2, . . . n:

yi =

m∑
J=1

aij xj aij are known (without statistical errors)

Distribution of expected number Poisson distribution Py(ŷ) = e−y yby
ŷ! is used to construct

(negative log of) likelihood function:

F (x) = − lnL(x) = − ln

[
n∏

i=1

Pyi
(ŷi)

]
=

n∑
i=1

(yi − ŷi · ln yi) + const. ,

which has to be minimized – or better (Fmin ∼ χ2)

F (x) =

n∑
i=1

gi with gi =

{
(yi − ŷi)− ŷi · ln(yi/ŷi) if ŷi > 0

fi if ŷi = 0
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Fitting using finite Monte Carlo samples

. . . but the aij have itself statistical errors, if determined by Monte Carlo simulation.

Method of R.Barlow and Chr.Beeston (Comp. Phys. Comm. 77 (1993)): redefine expectation

yi =

m∑
j=1

Aijxj with (unknown) expected number of events Aij

From each Aij the corresponding aij is generated by a distribution taken to be Poisson, and
included in the definition of the likelihood function.
This introduces a large number n × m of parameters, which however can be reduced to n
parameters ti, i = 1, 2, . . . n (see paper above).
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Solution

There is still a large number (n + m) of parameters to be determined in the fit:

x : m parameters t : n parameters

(time-consuming calculation).

Special fast solution: the n + m-by-n + m Hessian has a diagonal submatrix of the n-by-n
derivatives w.r.t. the ti and can effectively be reduced by partitioning to a small m-by-m
matrix.

Test with example C of Barlow paper on the next two slides:
100 bins with 1000 entries for ”data” and MC with two parameters.

1. parameter = 1/3 2. parameter = 2/3
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Fit of binned distributions: result on first parameter

Value of first parameter in simulation
is 1/3. Shown is the result of 10 000
”experiments”.

top Simple (Poisson) likelihood fit:
result biased

bottom Method of Barlow: result
unbiased

0 0.2 0.4 0.6
0

200

400
Simple likelihood fit

m = 0.38884 +- 0.53E-03

s = 0.05221 +- 0.39E-03

0 0.2 0.4 0.6
0

200

400
Barlow fit, parameter 1

m = 0.3365 +- 0.77E-03

s = 0.0766 +- 0.001
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”χ2” of the two fits methods

Goodness of fit can be checked by
(modified) value of (negative log) like-
lihood function. Expected value is
100− 2 = 98.

top Simple (Poisson) likelihood fit:
large ”χ2”, because fluctuation of
MC simulation partly neglected.

bottom Method of Barlow: value as
expected.

50 100 150 200 250
0

200

400

chi square of simple maximum likelihood fit

50 100 150 200 250
0

200

400

chi square of Barlow fit
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